
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PET4I101 ELECTROMAGNETICS ENGINEERING (4th Sem ECE-
ETC) 
Module-I (10 Hours) 1. Cartesian, Cylindrical and Spherical Coordinate Systems; Scalar and Vector Fields; Line, Surface and Volume Integrals. 2. Coulomb’s Law; The Electric Field Intensity; Electric Flux Density and Electric Flux; Gauss’s Law; Divergence of Electric Flux Density: Point Form of Gauss’s Law; The Divergence Theorem; The Potential Gradient; Energy Density; Poisson’s and Laplace’s Equations. 3. Ampere’s Magnetic Circuital Law and its Applications; Curl of H; Stokes’ Theorem; Divergence of B; Energy Stored in the Magnetic Field. 
Module-II (8 Hours) 1. The Continuity Equation; Faraday’s Law of Electromagnetic Induction; Conduction Current: Point Form of Ohm’s Law, Convection Current; The Displacement Current; 2. Maxwell’s Equations in Differential Form; Maxwell’s Equations in Integral Form; Maxwell’s Equations for Sinusoidal Variation of Fields with Time; Boundary Conditions; The Retarded Potential; The Poynting Vector; Poynting Vector for Fields Varying Sinusoid ally with Time 
Module-III (8 Hours) 1. Solution of the One-Dimensional Wave Equation; Solution of Wave Equation for Sinusoid ally Time-Varying Fields; Polarization of Uniform Plane Waves; Fields on the Surface of a Perfect Conductor; Reflection of a Uniform Plane Wave Incident Normally on a Perfect Conductor and at the Interface of Two Dielectric Regions; The Standing Wave Ratio; Oblique Incidence of a Plane Wave at the Boundary between Two Regions; Oblique Incidence of a Plane Wave on a Flat Perfect Conductor and at the Boundary between Two Perfect Dielectric Regions; 
Module-IV (8 Hours) 1. Types of Two-Conductor Transmission Lines; Circuit Model of a Uniform Two- 



Conductor Transmission Line; The Uniform Ideal Transmission Line; Wave Reflection at a Discontinuity in an Ideal Transmission Line; Matching of Transmission Lines with Load. 
Additional Module (Terminal Examination-Internal) (8 Hours) 1. Formulation of Field Equations; Wave Types; the Parallel-Plate Waveguide; the Rectangular Waveguide. 2. Radiation Properties of a Current Element; Radiation Properties of a Half-Wave Dipole; Yagi–Uda Antenna; the Parabolic Reflector Antenna. 
3. The Vector Magnetic Potential; Energy stored in a capacitor, Graphical field mapping; Continuity of Current in a Capacitor; Critical Angle of Incidence and Total Reflection; Brewster Angle.   
 
 
EI3I001 ELECTROMAGNETIC FIELD THEORY (3rd Sem I&E 
Engg.) 
MODULE – I (13 Hours) 
1. Vectors and Fields: Cartesian Coordinate System, Cylindrical and Spherical coordinate system, Vector Algebra, Scalar and Vector Fields, gradient, divergence, curl operations, The Laplacian, Divergence Theorem, Stoke’s Theorem ,Useful vector identities and their derivations. (selected portions from 1.01 to 1.05 of TB-1) 
2.: Electric and Magnetic fields: Field due to a line/sheet/volume charge, Biot _Savart Law,Gauss’s Law for Electric Field and Magnetic Field, Fields of electric and magnetic dipoles, Applications of electrostatics and magnetostatics, Faraday’s Law, Ampere’s Circuital Law. (portions 3.4.to 3.6, 4.4.3,4.6, 4.8,4.9, 8.3 to 8.8 and 9.2 of TB-2) 
3. Maxwell’s Equations: Divergence and Differential Form, Line Integral, Surface Integral and Integral form, Faradays Law, Ampere’s Circuital Law, Gauss’s Law for Electric Field and Magnetic Field. (portions 4.01 to 4.03 of TB-1) 
MODULE – II (13 Hours) (Portions 5.01 to 5.13 of TB-1) 
4. Wave Propagation in Free Space: The electromagnetic wave equation and its solution, Uniform Plane Waves, Direction cosines, Concept on TEM mode, Poynting Vector and Power density 
5. Wave Propagation in Material Media: Conductors and Dielectrics, Magnetic Materials, Wave 



Equation and Solution, Uniform Plane Waves in Dielectrics and Conductors, Polarization, Boundary Conditions, Reflection and Transmission of Uniform Plane Waves at the boundary of two media for normal and oblique incidence, Brewster’s angle. 
MODULE – III (10 Hours) 
6. Transmission Line Analysis: Transmission lines, Circuit representation of a parallel plane transmission line, Parallel plane transmission lines with loss, E and H about long parallel cylindrical conductors of arbitrary cross section, Transmission line theory, UHF lines as circuit elements (portions 7.10 to 7.16 of TB-1) 
7. Wave Guide Principles: Rectangular guides, TM waves in rectangular guides, TE waves in rectangular guides, Impossibility of TEM wave in wave guides, wave impedance and characteristic impedances, Attenuation factor and Q of wave guides, Dielectric Slab Guide ,(portions 8.01 to 8.04, 8.08,8.10,8.11 of TB-1)  
PET6J012 ANTENNAS & WAVE PROPAGATION (6th Sem ECE-
ETC) 
MODULE- I 
Electromagnetic radiation and antenna fundamentals- Review of electromagnetic theory: Vector potential, Solution of wave equation, retarded case, Hertizian dipole. Antenna characteristics: Radiation pattern, Beam solid angle, Directivity, Gain, Input impedance, Polarization, Bandwidth, Reciprocity, Equivalence of Radiation patterns, Equivalence of Impedances, Effective aperture, Vector effective length, Antenna temperature. 
MODULE-II 
Wire antennas- Short dipole, Radiation resistance and Directivity, Half wave Dipole, Monopole, Small loop antennas. Antenna Arrays: Linear Array and Pattern Multiplication, Two-element Array, Uniform Array, Polynomial representation, Array with non-uniform Excitation-Binomial Array 
MODULE- III 
Aperture Antennas- Magnetic Current and its fields, Uniqueness theorem, Field equivalence principle, Duality principle, Method of Images, Pattern properties, Slot antenna, Horn Antenna, Pyramidal Horn Antenna, Reflector Antenna-Flat reflector, Corner Reflector, Common curved reflector shapes, Lens Antenna 



MODULE- IV 
Special Antennas-Long wire, V and Rhombic Antenna, Yagi-Uda Antenna, Turnstile Antenna, Helical Antenna- Axial mode helix, Normal mode helix, Biconical Antenna, Log periodic Dipole Array, Spiral Antenna, Microstrip Patch Antennas. 
Antenna Measurements- Radiation Pattern measurement, Gain and Directivity Measurements, Anechoic Chamber measurement. 
ADDITIONAL MODULE (TERMINAL EXAMINATION-INTERNAL) 
Radio wave propagation- Calculation of Great Circle Distance between any two points on earth, Ground Wave Propagation, Free-space Propagation, Ground Reflection, Surface waves, Diffraction, Wave propagation in complex Environments, Tropospheric Propagation, Tropospheric Scatter. Ionospheric propagation: Structure of ionosphere, Sky waves, skip distance, Virtual height, Critical frequency, MUF, Electrical properties of ionosphere, Effects of earth’s magnetic fields, Faraday rotation, Whistlers.  
PEL3I001 ELECTROMAGNETIC THEORY (3rd Sem EEE) 
Module – I (8 hours) 
University Portion (80%): 
Co-ordinate systems & Transformation: Cartesian co-ordinates, circular cylindrical co-
ordinates, 
spherical co-ordinates. 
Vector Calculus: Differential length, Area & volume, Line surface and volume Integrals, 
Del 
operator, Gradient of a scalar, Divergence of a vector & divergence theorem, curl of a 
vector & 
Stoke’s theorem, laplacian of a scalar (Text Book 1: Chapter- 1, Chapter-2) 
College/Institute Portion (20%): 
Field: Scalar Field and Vector Field. Or related advanced topics as decided by the 
concerned faculty 
teaching the subject. 
Module – II (11 hours) 
University Portion (80%): 
Electrostatic Fields: Coulomb’s Law, Electric Field Intensity, Electric Fields due to point, 
line, 
surface and volume charge, Electric Flux Density, Gauss’s Law – Maxwell’s Equation, 
Applications 
of Gauss’s Law, Electric Potential, Relationship between E and V –Maxwell’s Equation 
An Electric 
Dipole & Flux Lines, Energy Density in Electrostatic Fields., Electrostatic Boundary – 
Value 



Problems: Possion’s & Laplace’s Equations, Uniqueness theorem, General procedures for 
solving 
possion’s or Laplace’s Equation. (Textbook-1: Chapter- 3, 4, 5.1 to 5.5) 
College/Institute Portion (20%): 
Nature of current and current density, the equation of continuity. Or related advanced 
topics as 
decided by the concerned faculty teaching the subject. 
Module – III (8 hours) 
University Portion (80%): 
Magnatostatic Fields: Magnetic Field Intensity, Biot-Savart’s Law, Ampere’s circuit law-
Maxwell 
Equation, applications of Ampere’s law, Magnetic Flux Density-Maxwell’s equations. 
Maxwell’s 
equation for static fields, Magnetic Scalar and Vector potentials. (Textbook-1: 
Chapter- 6.1 to 6.8) 
College/Institute Portion (20%): (2 hours) 
Energy in Magnetic Field Or related advanced topics as decided by the concerned faculty 
teaching the 
subject. 
Module – IV (7 hours) 
University Portion (80%): 
Electromagnetic Fields and Wave Propagation: Faraday’s Law, Transformer & Motional 
Electromagnetic Forces, Displacement Current, Maxwell’s Equation in Final forms, Time 
Varying 
Potentials, Time-Harmonic Field. Electromagnetic Wave Propagation: Wave Propagation 
in lossy 
Dielectrics, Plane Waves in loss less Dielectrics, Power & pointing vector. (Textbook-1: 
Chapter-8.1 
to 8.7, Ch.9.1 to 9.3 & 9.6) 
College/Institute Portion (20%): 
General Wave Equation, Plane wave in dielectric medium, free space, a conducting 
medium, a good 
conductor and good dielectric, Polarization of wave. Or related advanced topics as 
decided by the 
concerned faculty teaching the subject. 
 
 
 
 
 
 
 
 
 
 
 



MODULE-I 
 
Elementary Coordinate Systems 
 
We know that the cylindrical coordinates are given by  z,, . Basically, the xy plane 
is transformed into polar coordinates while the z axis remains the same in both the 
cylindrical and the rectangular system of coordinates. We solve a couple of numerical to 
explain the basics of the three orthogonal coordinate systems, namely, rectangular, 
cylindrical and spherical.  
 
Ex.1.1 Relate the differentials in cylindrical coordinates to the rectangular coordinates. 
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x
y

tan  
















 sincos
x

 

 
















 cossin
y

 









cossin
sincos

AAA
AAA

y

x




 

 

Ex.1.2 Compute 
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Soln: Substitution of the results in Ex. 1.1 in the above expression gives us 
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This is equal to 
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Therefore, 
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Ex 1.3. Transform the equation 02
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Thus, 
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Therefore, 
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Similarly, 
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Adding the two terms, we get 
 

 

22

2

22

2

2

2

2

2

2

2

2

2

2

222

2

2
22

2

2

2

2

2

22

2

2
2

2

22

2

2

22

2

2
2

2

2

2

2

1

1

cossincossinsincos

coscossin2cossincos2sin

sinsincos2sinsincos2cos






























































































































































xx

 

Ex. 1.4 Derive a suitable expression for  
x
  in cylindrical coordinates. 

Soln: We have 
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Now, 
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Substitution of this in the above gives us 











































































































2

2

2
2

2

2
2

2

2

2

2

2

2

sincos

cossin

cos.cossin

cossin
x

xxxx

 

 
Ex. 1.5 For a spherical wave, the displacement   is a function of r  and t  where r is the 
magnitude of the distance from a fixed point. Obtain a general equation for the spherical 
wave.  
 
Soln: We need to show the following 
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Let us go for the second order differential which is obtained by differentiating the above 
function once more with respect to x .Thus, 
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Similarly, we get for the y component 
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and for the z component 
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Therefore, 



   

























































































r
r

rr

rzyx
rrr

rr
zyx

rr
zyx

rr

rr
z

rr
z

rr

rr
y

rr
y

rr

rr
x

rr
x

rrzyx

2
2

2222
2

2

3

222

2

2

2

222

3

2

2

2

2

2

3

2

2

2

2

2

3

2

2

2

2

2

2

2

2

2

2

2

1

2

3

1

1

1



 

Ex 1.6. Plane m10z carries a surface charge density of 20nc/m2 . What is the electric 
field at the origin? 
 
Soln: The unit normal to the plane of m10z is za . As this is above the origin, the unit 
normal for the electric field at the origin becomes za . Thus, the electric field strength 
becomes 
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Ex 1.7. Two point charges (Q1=Q,Q2=2Q) and an infinite ground plane are shown in the 
following figure. Find the ratio of the forces experienced by both 1Q  and  2Q . 

 
 
 
 
Soln: The ground plane acts like a mirror for the two charges and charges of opposite 
polarity with same magnitude are induced on both sides of the plane. Hence the diagram 
looks as the following 
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Force experienced by 1Q would be due to three charges; dQ 2at1 , datQQ 322   and 
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Ex 1.8. The electric field strength at a distance point, P, due to a point charge, +q located 
on the origin, is 100 V/m. If the point charge is now enclosed by a perfectly conducting 
metal sheet sphere whose centre is at the origin, compute the electric field strength 
outside the sphere. 
 
Soln: With a conducting metal sheet surrounding the point charge +q, equal and opposite 
charges are induced in inner and outer surfaces of the sphere. The net charge enclosed by 
Gaussian surface of radius ’r’ is again +q. Thus, 
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Thus, the electric field is same with and without the conducting sphere. 
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Ex 1.9. A straight current carrying conductor and two conducting loops A and B are 
shown in the following diagram. What are the directions of the induced currents in A and 
B if the current in the straight conductor is decreasing? 
 
 
 
 
 
 
 
 
 
Soln: The direction of the current as shown produces a magnetic field in the 
anticlockwise direction that encircles the straight wire. It becomes anticlockwise in B 
whereas A has clockwise encircled magnetic flux. If the current is decreasing in the 
straight conductor, the induced currents in the loops would be in such a direction so as to 
oppose this change. Hence, B would get a current in the clockwise direction and A would 
have its induced current in the anticlockwise direction.  
 
Ex 1.10 In spherical coordinates region 1 is ar  , region 2 is bra   and region 3 is 

br  . Regions 1 and 3 are free space, while 5002 r . Given rB ˆ20.01  , find  H   in 
each region. 
 
Soln: We know that, the normal components are related as 
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 Hence, 
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and the corresponding magnetic field in region 3 is 
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Ex 1.11. Obtain the unit vector along the direction of propagation of a wave, the 
displacement of which is given by    tzyxatzyx 5432cos,,,   . 
 
Soln: The unit vector along the direction of propagation of the wave is corresponding to 
the plane constant432  zyx  
 
Hence, it becomes 
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Ex 1.12. The displacement associated with a three-dimensional wave is given by 
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Soln: The generalized wave equation is 
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For the given problem, the two components of the vector k are 
kkk yx   and the two components of the position vector are 
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The wave propagates in the xy  plane making an angle of 300 with the positive x  axis 
and 600 with the positive y  axis. 
 
Ex 1.13 Find the force per unit area on the surface of a conductor, with surface charge 
density   in the presence of an electric field  na  is the unit outward normal to the 
surface. 
 
Soln: The electric field at a given point due to the surface charge density is  
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Force per unit area due to another sheet charge is 
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Ex 1.14 Inside a right circular cylinder, 10001 r . The exterior is free space. If 
φB ˆ5.21   (T) inside the cylinder, determine 2B  just outside. 

 
Soln: We know that the tangential component of H  is continuous across the boundary. 
Thus, 
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Ex 1.15. In free space,  yB ˆztj

meB   . Find the corresponding electric field. 
  



Soln: We know that 
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If we expand the above expression we get 
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In the above expression we understand that the magnetic field has an y component only 

and further j
zyx










 ,0 . Therefore, 

 ztj
m

y eBj
z
B  



 

and    xxE ˆˆ
0000

ztjmztjm e
B

e
j

Bj 





    

As 2

2

002

2

00

1







  

Substitution of the above in the electric field expression we get 
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This expression shows that the electric field E and the magnetic field H  are in space 
quadrature but in time phase. Both of the fields propagate with the same velocity in the 
positive z direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Ex.1.16  Find the electric field in the region between the two cones as shown in Fig.1.1. 

 
Fig.1.1 Figure for Ex.1.16  
 
Soln: The potential is observed to be a function of the azimuthal angle  only and is a 
constant with respect to r  and  . Hence, Laplace’s equation becomes 
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The potential between the two cones equidistant from the origin is therefore 
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Therefore, the solution to the potential becomes 
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Further, we observe that, 1VV   at 1   and 0V  at 2  . Therefore, 
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From these two, we obtain 



































































2
tanln

2
tanln

2
tanln

2
tanln

11

1

11
1





VK

KKV

 

The potential is, therefore 
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The electric field is evaluated as 
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The general electric field is evaluated as 
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Hence, the total electric flux bounded by the conical surface is 
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The total charge enclosed by the surface. Therefore, the capacitance per unit length is 
given as 
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In spherical coordinates, under the assumption that the potential at a given point is a 
function of the radial distance from the source, then we have 

C
r
KV

r
K

r
V

K
r
Vr

r
Vr

rr
V






































2

2

2
2

2 01

 

 
The two most important theorems often used to evaluate radiated fields due to various 
conductor configurations are Gauss’s divergence theorem and Stoke’s theorem. The 
former as the name suggests is related to the divergence of a vector and the latter is 
related to the curl of a vector. The divergence theorem states that 
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  DsD ..   

This gives us 
 D.  

 
Fig.1.2  Path difference between a source point and an observation point 
 
The potential V due to a continuous charge distribution  contained in the volume 0V is 
expressed as 
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where '''' dzdydxdv  . The distance R  is computed as follows: 
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We can simplify the distance by writing 
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We note that the term cos'r  also represents the projection of 'r onto r and therefore, 
can be expressed as rar'. . 

 
Fig.1.3 An electric dipole that makes use of the principle outlined in Fig.1.2 (An 
infinitesimal electric dipole) 
 
Two approximations are usually carried out for the far field of the antennas. These are 
made to the amplitude and phase of the radiated fields. The approximations are:  
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cos'rrR   for the phase term and 
rR   for the amplitude term 

 
The charge dipole, hence may be expressed as 
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The far field potential as obtained from (D) may be expressed as 
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This is due to the fact that   1 dxx and  
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This follows from the fact that the delta function  x  assumes a value of unity only at 
0x and is zero at all other values of x . Further, the area bounded by a dirac delta 

function is equal to one. 
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This result due to an electric dipole consisting of two fixed static charges gives us the 
potential at a faraway point. We may observe that the negative of the gradient of the 
potential gives us the electric field evaluated as 
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These fields are static and they are constants both in magnitude as well as in direction at a 
certain distance r from the source. They also vary inversely as the cube of the distance 
which means that at really far distances from the source, their magnitude becomes too 
insignificant to carry energy or power. These cannot act as radiated fields as required in a 
power transfer by wireless methods. We must have a field that varies at most as the 
inverse of the squared distance from the source. Moreover, the field needs to be time 
varying so that we get radiated fields. Also a magnetic field is required to carry energy 



from one point to another in a wireless manner. We take up the generation of the 
electromagnetic fields first to understand this wireless transfer of energy by electric and 
associated magnetic fields generated due to time varying sources. 
 
Stoke’s law as related to the curl of a vector states that 
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The standard wave equations are 
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Under the assumption of sinusoidal steady state, the wave equations become 
JA   22  
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The magnetic vector potential A at a given observation point far away from a current 
source similarly can be evaluated with the aid of Fig. (A) except that the charge as a 
source should be replaced by a current source that has a current density of J A/m2 
established and therefore, we can similarly write 
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As we may observe, the distance of the observation point from the source R is given by 
(B) . 
 
Transmission Lines 
 
The transit time effect is an important issue in the characterization of high frequency 
behavior of electric circuits. At low frequencies, the wavelength is long and the time 
period of a given signal is also long. This means that, if a source in the form of a periodic 
waveform is present at one particular point of the circuit at a given point in time, it would 
be available on some different point almost at the same time.  
 



 
We observe that, the points marked A-G require a finite amount of time rt  to reach the 
destination end, also known as the load. This is known as the retrace time. The time 
period of the signal is T . We may see that, these two times are almost comparable. By 
the time point A reaches the destination, the source signal changes to a point marked load 
end. As the voltage goes to different values between the source and the load end, which 
are some distance apart, we get a phase difference between these two points. A similar 
situation holds good for all other points. This is due to the fact that the time to reach the 
load and the time period of the source are comparable. If we increase the frequency of the 
source, we may anticipate that the phase change would be more. To describe it 
mathematically, we define the electrical length of the circuit as L   where L is the 
physical length between the source and the load and  is the wavelength of the signal 
(voltage or current) impressed at the source end. The quasi-static regime is defined for 

1L  which is typical of low frequency lumped circuit parameters. As we may see, 
the wavelength of the signal is much longer than the physical distance between the source 
and the load. Let us define the transit time as vLtr  . Hence, in this case,  
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 This simply means that the signal impressed at the source end reaches the load in a very 
small amount of time. In other words, the transit time is such that, during this time, the 
signal at the source end does not change much as it has a longer time period as compared 
to the transit time. 
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However, as the frequency of the source increases, the time period gets correspondingly 
shorter and by the time one particular point of the source signal reaches the load end, the 
source signal changes to a different value, The signal amplitudes are at different values 
between the source and the load end and this gives rise to the resonance region 

characterized by 1~

L

T
t r  . The transit time becomes an appreciable fraction of the time 

period which means that the source and the load ends experience different amplitudes of 
the signal which gives rise to a phase difference between them and it becomes a function 
of the physical distance or the electrical length of the circuit. Due to the phase difference 
between two different points of the circuit (observed at the same time of course), the 
effect is a distribution of frequency sensitive elements like inductance and capacitance 
over the length of the circuit. As practical circuits exhibit losses, there are resistances and 
conductances as well distributed throughout the length of the circuit. This gives rise to 
the so called distributed circuit analysis. 
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These equations can be written as 
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The voltage and the currents on  a transmission line are governed by two coupled first 
order differential equations as given above. To solve those, let us differentiate both w.r.t. 
x  so that we have 
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Substituting the expressions for the first order differentials in these, 
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Let us write 
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So that, now the two equations become 
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Both the equations are governed by the same second order differential equations. As we 
might see, the constant   is a constant at a given frequency. The solutions to the voltage 
and current along the line are: 

   xVxVV  expexp    
   xIxII  expexp    

The  VV , ,  II ,  are arbitrary constants that are to be evaluated by appropriate 
boundary conditions. These constants are in general complex and their phases represent 
temporal phases with respect to some reference time. As we may see, in these 
expressions, the time harmonic function is implicit. The total solution, is therefore, 

      tjxVxVV  expexpexp    
      tjxIxII  expexpexp    

From these two expressions we see that, they represent a standing wave on the line; one 
goes along the positive x -axis given by  xexp  with an amplitude of V and the other 
along the negative x -axis given by  xexp  having a amplitude of V . A similar 
condition holds for the current flowing in the line. What we see is that instead of talking 
about voltage and current a given point on the line, now we have two waves in two 
opposite directions with two different peak amplitudes. The most important observation 
is that, both voltage and current are functions of the given point in space; x axis. This is 
unlike the low frequency characterization of voltage and current where both are functions 
of time only. They are temporal functions. However, for the transmission lines, the 
voltage and currents are also spatial functions. Therefore, we may guess that, the 
impedance is also point specific; it is a function of space.  
 
Let us write 

 j  
The constant  is known as the attenuation constant of the line; as it attenuates the wave 
as it propagates along the line. The unit of  is neper/m. This means that if the voltage 
travels a length of 1 m from the source, it decays to a value of 1e of its amplitude at the 
source. The attenuation, in dB is, therefore,   68.8log20 1 e dB. 
To evaluate the four constants, we proceed as 
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Equating respective terms on both sides, we have, for the coefficient of  xexp  
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The quantity 
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 has the dimensions of impedance denoted as 
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This 0Z is known as the characteristic impedance. The parameters   and 0Z are known as 
the secondary parameters of the transmission line. 
 
 MODULE-II 
 

 
2. GENERATION OF ELECTROMAGNETIC WAVES 

 
An antenna is a structure usually made from a good conducting material that has been 
designed to have a shape and size such that it will radiate EM power in an efficient 
manner. Time-varying currents radiate EM waves. Thus an antenna is a structure on 
which time-varying currents can be excited with a relatively large amplitude when the 
antenna is connected to a suitable source usually by means of a transmission line or 
waveguide. In order to radiate efficiently, the minimum size of the antenna must be 
comparable to the wavelength. A generic structure for the generation of the EM waves is 
shown in Fig.2.1. 
 

 
Fig.2.1 A Generic Block Diagram of generation of EM waves through low frequency to 
high frequency conversion 
 
At frequencies above 40MHz, communication is essentially limited to line-of-sight paths. 
A typical LOS link is that used for TV broadcasting. Another example is the LOS 
microwave link used in the telephone service. In order for an antenna to radiate into a 
small angular region and thereby provide a higher concentration of power at the receiving 
site, it must be physically large in terms of wavelength. In the microwave band where the 
wavelength is in the range of 3 to 30 cm, large reflector antennas with gains as large as 
40 to 50dB are quite common. With a large available gain, the transmitter power can be 
reduced accordingly. It is not unusual to use transmitter powers of a few watts or even as 

High Power 
Amplifier 

Spherical 
wave fronts Transmission line/ 

Waveguide 

Transmitting 
Antenna 

From 
modulator 

High frequency  feed 
voltage/current 



low as a few milliwatts in the microwave band. There is also less atmospheric noise at the 
higher frequencies so smaller signal levels can be used. 
 
The waveguide is a structure that guides electromagnetic waves from a source to a 
destination. They transport electromagnetic energy over long distances with a minimum 
amount of signal loss. The waveguides basically are of two types: metal based and 
dielectric based. The frequency range of operation of the metallic waveguides range from 
a few tens of kHz to a  few tens of GHz. Beyond these frequencies, these waveguides 
have excessive losses and become inefficient in the transportation of energy. Dielectric 
waveguides, on the other hand, beyond millimeter wavelength operation, are used to 
transport electromagnetic energy, however, in the form of optical signals or light waves. 
We have either slab or cylindrical waveguides. The slab waveguides are used in thin film 
applications and integrated optical devices. The optical fibers are cylindrical waveguides 
that have been widely used in both communication and instrumentation applications due 
to a number of advantages. The interested reader can refer to standard texts on optical 
fiber based systems for an in depth knowledge about the working and applications of the 
optical fibers.  
 
2.1 Vector Potential approach in forming a field expression 
 
The vector potential set up by the infinitesimal current element at a distance r  from the 
origin of the coordinates system under consideration is 
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We may observe from (2.1) that   represents the wave number given as 

 2

  . 

 
Fig.2.2 Relationship between the unit vectors aaa zr and,  
 
From Fig.2.1, in spherical coordinates,   sincos aaa rz                              (2.2) 
Substitution of (2.2) in (2.1) we have, 
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the vector magnetic potential as defined above gives a corresponding magnetic field in 
the region outside of the current source as 
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The validity of (2.5) follows from the fact that a current flowing through a conductor 
along the positive z axis produces a magnetic field in the form of loops contained in the 

xy plane and has a   component only. We, therefore have, from elementary 
magnetostatics,  

 
a

r
IH

2
                                                                                                                    (2.6) 

From (2. 3), we note that,  

  



 


 aIdl
r

eA
rj

sin
4



  and                                                                            (2.7a) 

  


 

cos
4

Idl
r

eA
rj

r



                                                                             (2.7b) 

Further,   



 


 aIdlerA
rj

sin
4



                                                                   (2.8) 

Thus,     



 


 aIdlejrA
r

rj

sin
4





                                                                (2.9a) 

and     







sin
4

Idl
r

eA
rj

r







                                                               (2.9b) 

Use of (2.9) gives (2.5) as 
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If current flows through the positive-z direction, we note that, 
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This gives us 
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The result given in (2.14) gives the far field distribution for most of the practical 
antennas.  
 
The elementary magnetic field due to an elementary current Idl flowing in the positive 
z -direction at a distance r from the origin is given as 
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As we note from above, for a current in the positive z-direction, this becomes 
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Substitution of (2.2) in (2.16) gives us 
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as for the current flow such as this, dldz   
 
(2.17)  also gives the noted Biot-Savart law in the spherical coordinate. 
 
For a current element Idl , the phasor magnetic vector potential, from (2.13)  is 
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Differentiating (2.18) w.r.t. r , we obtain  
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Hence, the magnetic field becomes 
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We note from (2.20) that, the magnetic field has a   component due to a current flow in 
the z-direction. The associated electric field is given as 

  dtHE

1                                                                                                          (2.21) 

    














rHrH

rr
H 1                                                                                  (2.22) 

From (2.22), we understand that, the electric field has an r and a   component. The 
r component is obtained from the first term in the RHS by taking its curl and subsequent 
integration of it with respect to time. This becomes then, 
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             (2.23) 
The   component of the electric field is obtained as the time integral of (2.23). Thus, 
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This is 
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Then (2.25) is expressed as 
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This becomes 
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Fig.2.3 Schematic illustration of formation of waves 
 
The electric field lines between two conductors show a pattern similar to that of the 
voltage source connected across them. For example, if the voltage is sinusoidal, then the 
lines of force would exhibit a similar sinusoidal pattern in the space between the two 
conductors and this is illustrated in Fig.2.3. The repetition of the positive and negative 
half cycles of the electric field take place at a rate equal to the frequency of the applied 
source. The relative strength of the field is indicated by the closeness or the farness of the 
lines in Fig.2.1 and the direction is shown by the arrows. An upward going arrow 
indicates the positive half cycle and a negative going arrow indicates the negative half 
cycle of the source. The bunching together of the lines at certain points show the 
occurrence of positive and negative peaks. As the electric field varies in time, it also 
generates an associated magnetic field as indicated by Maxwell’s law. We, therefore, 
have both electric and magnetic fields inside the space between the two conductors, At 
the flared end of the conductors, the waves see a change in impedance as a result of 
which some of them are reflected and travel toward the source. The interference of the 
forward traveling wave and the reflected wave would produce a standing wave pattern 
which is not desirable from an antenna point of view. This is simply due to the factt that 
we would like the antenna or the system of conductors to radiate waves or make possible 
only a forward flow of energy. 
 
From all the above discussions, we understand that, for a current flow in the positive z -
direction, the magnetic field has a   component whereas the electric field has 
components both along the r and the   direction. This implies that, the electric field is 
contained in the r  plane which is perpendicular to the magnetic field oriented 
completely along the   direction. One field gives rise to the other and hence they exist 
simultaneously. The H  field as given in (2.20) has two components; i.e. the first term 
being proportional to inverse of the distance r from the origin and the second term being 
proportional to the square of the inverse distance. For small r  close to the current 
carrying conductor, the second term predominates and this is called induction field. This 
field is also the magnetic field that would be produced by a current of tI cos due to the 
application of Biot-Savart law except for the factor of 't . This field is a function of 't  is 
explained by the fact that, a finite time for propagation is required on the part of the field. 
This causes an energy that is stored in the field during one quarter of a cycle and returned 
to the circuit during the next. 
 
The first term is known as radiation or distant field and dominates for large; i.e. at greater 
distances from the current element. This field is not present for steady currents. This 
results from the finite time of propagation which is of no concern in the steady-field case. 
This term is responsible for a flow of energy away from the source. The two fields have 
equal amplitudes at that value of r which makes 
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which implies that, 
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The amplitudes of the radiation fields of an electric current element Idl are, from the 
second term of (2.25) 
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The first term of (2.27) gives us the amplitude of the magnetic field as 
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These two relations in(2.32) and (2.33) show that the amplitudes of the electric field and 
the magnetic field are in time phase but space quadrature. They are related by 
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which is a constant known as the intrinsic impedance of the medium. For example, the 
intrinsic impedance   corresponding to free space is found to be 120 Ω.  Knowing one 
field will help in computing the other. 
 
From the above it is understood that, a magnetic field is produced only when the current 
is changing and these two fields exist simultaneously. The two fields are in space 
quadrature. A static charge produces a steady electric field which does not change with 
respect to time and hence cannot generate an induced magnetic field. Similarly, a dc 
current flowing in and around a conductor produces a steady magnetic field that remains 
constant in magnitude and direction at a given distance from the conductor. This kind of 
steady magnetic field cannot induce an electric field. We, therefore, see that steady 
electric and magnetic fields are independent of each other and do not contribute to 
producing a wave of any kind. 
 
2.2 Proof of the outward energy flow due to the radiation term 
 
The instantaneous power flow per unit area at the point P is given by the Poynting vector 
at that point. The radial Poynting vector is expressed as 
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Hence, the average radial power flow is given by the integral of the instantaneous value  
over one complete cycle. Doing so, we understand from basic theory that, the first, 
second, third and the fifth term will yield zero. Hence, we obtain 
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where T is the time period of oscillation of the current element and

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elementary area in spherical coordinates is  dr sin2 2 , the total power radiated becomes 
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We note from (2.37) that, the radiated power is inversely proportional to the square of 
operating frequency and current. If the carrier frequency increases, the power radiated 
into space also increases as its square. An increase in current gives rise to stronger 
magnetic and electric fields as is evident from the expressions for H and EEr , . Hence, 
the radiation field is stronger for higher currents. In the above expression, the peak value 
of current has been used. The effective or the RMS current is, for a sinusoidal distribution  
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Substitution of (2.38) in (2.37) yields 
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From (2.39), it appears that, the term 
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power is RI 2 . This resistance is defined as the radiation resistance and for a current 
element,  
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In (2.40), the dipole current is uniform. However, with no end loading, the current must 
be zero at the ends and if the dipole is short, the current tapers almost linearly from a 

maximum at the center to zero at the ends with an average value of 
2
1 of the maximum. 

We also note that, for lengths small compared to a wavelength, the radiation resistance is 

very small. For example, if 1.0

dl , then 208.0 radR . The value of the radiation 

resistance is an indicator of the power radiated by the antenna into space. Thus, this type 
of antenna is not a good radiator of EM power into space. A practical antenna such as an 
elementary dipole is a center-fed antenna. Its length is very short as compared to a 
wavelength at the carrier frequency. For the same current I at the terminals the practical 
dipole of length l  radiates only one-quarter as much power as the current element of the 
same length which has the current I throughout its length. The radiation resistance of a 
practical short dipole is one-quarter that of the current element of the same length. That is 
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2.3 Radiation Resistance of a Loop Antenna 
 
The field radiated by a small magnetic dipole is the dual of that radiated by a small 
electric current dipole short current filament. The source point (the elementary current 
length) is assumed to be in the xy plane having a coordinate of  0,',' yx  and the 
observation point is assumed to be at  zyx ,, .  The contribution of the current filament of 
strength Iad  to the total vector potential is found by the use of the equation 
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Fig.2.4 A loop in the xy plane carrying a current I  that produces a field at  zyx ,,  
 
(2.42) takes the form of 
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This is due to the reason that the elementary current length is in the xy plane. However, 
we may note immediately from Fig.2.2 that, the contribution to the field due to the   
component will be canceled by a diametrically opposite current element. Therefore, 
(2.43) is simplified to  
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Substitution of (2.44) into (2.43) gives us 
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We are primarily interested in the far field so that ar  . It is further assumed that 
a  so that the loop may be treated as a point source. In the spherical coordinate 
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      

  

 

 

 



 













































'cossin1

...
2
1'cossin1

'cossin21

'sinsin'coscossin2

'''

2

2
1

2

2/122

222









r
ar

r
a

r
ar

r
a

r
ar

raar

zzyyxxR

        (2.49) 

as  cossinrx  ,  sinsinry   and cosrz  , cos' ax  and sin' ay   
(2.46) is approximated as 

   'cossin'sinsin'coscossin   ararR       (2.47) 
as 22 ra   
Hence, substitution of (2.49) into (2.48) gives us 
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We further make an assumption that 1a . Hence, the exponential term may be 
expanded in a series and the higher orders in the expansion may be neglected. We obtain, 
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We note that, the integration of the first term in (2.50) gives us zero and that of the 
second term  sin2aj . Hence, we obtain, the   component of the vector potential as 
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The quantity Ia 2  is the product of the area of the circular loop of radius a  and the 
current flowing through is and is known as the dipole moment of the small circular loop.  
 
Method-II 
 
The same expression could have been derived by another way in the following manner. 
As before, under the assumption of 1a  and using the series expansion of the 
exponential term, we obtain, 
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The integration of the first two terms in the above expression gives us zero.  
Using   'sinsin'coscos'cos    and using in the above expression for the 
second term, we obtain, 
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We also write,  'cossin   arR  
Having obtained the vector potential, we can obtain the magnetic field and the 
corresponding electric field. 
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The corresponding electric field is given as 
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The radiated power is 
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The radiation resistance of the loop may be found by equating aRI 2

2
1  to rP . So, we get 
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Let us consider a loop with a radius of 1cm operating at a frequency of 1 MHz, and 
substitution of these values into the above expression gives us a radiation resistance of 



9108.3 aR Ω. So a small loop antenna is a very poor radiator. If N  turns of wire are 
used, the radiation resistance is increased by a factor of 2N . Small loop antennas are 
often used as receiving antennas for portable radios. Although they are very inefficient, 
they do give an acceptable performance because of the large available signal level. At 
low frequencies atmospheric noise is often the limiting factor, so a more efficient antenna 
does not necessarily give better reception. Of course, a small loop antenna would not be 
used for transmitting purposes unless very short distances were involved and the poor 
gain could be tolerated. The gain of a small loop antenna is very low because the ohmic 
resistance of the wire is generally much greater than the radiation resistance. 
 
Ex. 2.1: Two z directed Hertzian dipoles are in phase and a distance of d  apart. The 
electric field intensity is given by 
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The radiated power is obtained by taking the integral of the above over an elementary 
surface. 
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2.4 DIRECTIVITY 
 
The ability of an antenna or an array of antennas to concentrate the radiated power in a 
given direction, or conversely to absorb effectively incident power from that direction is 
specified variously in terms of its gain, power gain, directive gain or directivity.  
The magnetic field is obtained from the magnetic vector potential by taking its curl. In 
spherical coordinates, it is expressed as 
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                                                                                                                          (2.60) 
Under the assumption of the wave propagating along the radial direction from the current 
source, we note that the electric and the magnetic fields would lie in the    plane. 
Therefore, (2.60) reduces to 
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This is due to the fact that the radial component rA  does not exist or 0rA . As the 
magnetic vector potential has components constrained to lie in the    plane, we can 
also express (2.61) as the following. 
Let us define a vector potential  
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Using the fact that  aaa r  ,  aaar   and raaa                                   (2.63) 
We may observe that, 

    
    







arAarA
arAarAaAa rTr

,,,,
,,,,




                                                               (2.64) 

Tr Aa

a
r
A

a
r
AA










 





                                                                                             (2.65) 

Let us consider very generic expressions for the two components of the magnetic field 
vector as the following: 
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And similarly, 
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Therefore, the first term of (2.61) becomes 
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Similarly, 
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The radiated field components correspond to the terms containing 
r
1  only. Hence, we 

retain the term     rjAj    exp,0   from (2.67a) and     rjA
r
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  exp,0  

from (2.67b). The total contribution to the magnetic vector potential is, 
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We have made use of (2.67) in deriving (2.68). We, therefore, obtain the magnetic field 
as 
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where we have made use of (2.65). 

Further, 
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Hence, the magnetic field can also be expressed as 
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The electric field associated with (2.71) is evaluated as 
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To evaluate (2.72) we note that, a similar expression appears in (2.61). Here, the radial 
component is nonexistent. Hence, 
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We may note that,  
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A similar expression may be obtained for 
r
A


  . Combining these two together, we have 

an expression for the radiated electric field as 
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The generic expressions for the radiated electric field and the magnetic field are given by 
(2.75) and (2.71) respectively when the wave propagates along a radial direction from the 
source. The power radiated per unit area in any direction is given by the Poynting vector 
P. For the distant or radiation field for which the electric field and the magnetic field are 
orthogonal in a plane perpendicular to the radius vector, and for which HE v , the 
power flow per unit area is given by 

HEHEP v
v

 


2

                                                                                              (2.76) 

The radiation intensity   ,  in a given direction is defined as the power per unit solid 
angle in that direction. This takes the form of 
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The radiation intensity is independent of the radial distance. The total power radiated is 

  dWr  watts                                                                                                        (2.78) 
Since there are 4  sertaradians in the total solid angle, the average power radiated per 

unit solid angle is 
4
tW . 

The directive gain or the directivity is defined as the ratio of the radiation intensity in that 
direction to the average radiated power. That is, 
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For a current element Idl , the distant field in the direction of maximum radiation is, from 
(2.32) 










 dlI
r

E 60             (2.80) 

The current required to radiate 1 watt is, therefore, from (2.39) 
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Substitution of (2.81) in (2.80) gives us a corresponding field strength in the direction of 
maximum radiation as 
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The radiation intensity is 
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so that the directivity or maximum gain of the current element is 
  5.14max  dg                                                                                                   (2.84) 

The above expression states that for a current element the computed directivity is 1.5. 
Next, let us evaluate the directivity of a half wave dipole by considering its radiated field 
expressions.  The Poynting vector power density for the half-wave dipole is maximum at 

2
   and hence the effective or the RMS value of the electric field is 
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The radiated power is 
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The power input to the dipole is 22 73 rmsrmsrad IIR                                                        (2.87) 



From (2.87) we observe that, the radiation resistance of a half wave dipole is 73Ω.  
Hence, the directive gain of the half wave dipole is 
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We can also evaluate the directivity of a half wave dipole in the following manner. For a 
half-wave dipole, the maximum field strength is 

r
IE m60

 V/m                                                                                                              (2.89) 

The effective or the RMS value of the electric field is, therefore 

r
IE rms

rms
60

                                                                                                               (2.90) 

The current required to radiate 1 watt is 
73
1  amps. This can be verified from (2.87). 

The corresponding field strength in the direction of maximum radiation is obtained by 
substituting this value in (2.90) and this is, therefore, 
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The radiation intensity is 
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Hence its directivity is 
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We next relate the electric field strength and the effective radiated power. As the power 
radiated is proportional to the square of the RMS value of the current,  

Thus, 
5.36

WI rms                                                  (2.94) 

Substitution of the above value of the RMS current in the field strength expression gives 
us 
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One mile = 1609.344 meters =1.609344 Km 
 
The above RMS field strength for a distance of 1 mile is                                          (2.96) 
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Next we set up the vector potential due to a traveling wave current distribution in the 
z direction given by   zj

meIzI   



MODULE-III 
 
 
3.1 LINEAR ANTENNA 
 
A linear antenna is assumed to be made up of a large number of very short conductors 

connected in series. A conductor having a length of 
2
  is shown in Fig.1. The two ends 

of the conductor are at opposite voltages. The RF energy from the transmitter is fed at its 
center because the dipole antenna is a symmetrical antenna in which the two ends are at 
equal potentials relative to the mid-point. At the open-ends, the current is zero and the 
voltage is maximum. The radiation pattern represents the field strength in various 
directions of an open ended half-wave antenna. For the opened out half wave conductor, 
the magnetic field will be maximum along a line extending from the its center and 
electric fields will be perpendicular to it.  
 
The half-wave dipole (Fig to be inserted) derives its name from the fact that its length is 

half a wavelength 
2


l . It consists of a thin wire fed or excited at its midpoint by a 

voltage source connected to the antenna through a transmission line. The field due to the 
dipole may be considered to be consisting of a chain of Hertzian dipoles. The magnetic 
vector potential at a point P due to a differential length dzdl  of the dipole carrying a 
phasor current zII s cos0 is 
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A sinusoidal current distribution has been assumed here for two reasons. First it is due to 
the transmission line model of the dipole. Second, the current must be zero at the ends of 
the dipole. Thus one may consider a triangular distribution of the current also. However, 
it is likely to yield a less accurate result. We write 

cos' zrr                                                                                                                 (3.2) 
or cos' zrr   
 
 
 
 
 



 
Fig.3.1 An electric dipole 
 
The difference between r and 'r  is quite significant. Hence, the above magnetic vector 
potential is written as 
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The total magnetic vector potential becomes 
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We understand that 
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Substitution of (3.5) in the total magnetic vector potential given as in (3.4) gives  
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Further, since 
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In this section, we will derive a general expression for the distant electric field of a dipole 
antenna of any half-length H . The total vector potential at point P is 
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Because of the approximation rR  , we write (2.104) as 
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We make use of the following integral to evaluate the above. 
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In the first term in the RHS of (3.9), it is noted that,  cosja   and b  
Thus, with this the first term in the RHS of (3.9) becomes. 
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Similarly, the second term in the RHS of (3.9) becomes 
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which is equal to 
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Combining the two, we obtain 
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We recall that when the current is entirely in the z direction,  
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Differentiation of (3.10) w.r.t. the radial distance r  gives us the expression for the 
magnetic field strength at a distant point as 
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where only the inverse distance term has been retained. The electric field strength 
corresponding to the radiation field will be 
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From this, we note that, the electric field and the magnetic field are in time phase. The 
power density is expressed as 
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A resonant antenna corresponds to a resonant transmission line and the dipole antenna is 
a resonant antenna. Such an antenna may be viewed as an open-circuited transmission 
line, open-circuited at the far end of the resonant length, i.e. a multiple of quarter-
wavelength so that the length of the antenna is a multiple of half-wavelengths. The 
radiation pattern is a line drawn to join points in space which have equal field intensity 
due to the source.  
 
3.2 NONRESONANT ANTENNA 
 
A nonresonant antenna is like a nonresonant transmission line on which there are no 
standing waves. These are suppressed by the use of a correct termination to ensure that no 
power is reflected thus ensuring the presence of a traveling wave only. In a correctly 
matched transmission line, all the transmitted power is dissipated in the terminating 
resistance. When an antenna is terminated similar to a transmission line, about two-thirds 
of the input power is radiated, the remaining one third is dissipated in the antenna and 
none is reflected to the input. An example is a Rhombic antenna that is used for point-to-
point working in the HF range spanning a frequency range of 3-to 30-MHz. It is a 
broadband antenna. For the terminated antennas having only a traveling wave distribution 
of current, we derive next the pattern of these next.  
 
For a distant point P located at a distance of R from the origin, we note that, the 
elementary vector potential is expressed as 
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Evaluating the integral, we obtain 
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We recall that when the current is entirely in the z direction,  
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Hence, the magnetic field strength in the perpendicular direction is 
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This becomes, after simplifying, 
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The electric field intensity is expressed as 
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Thus, the magnitude of the electric field is 
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It is observed from the above expression that with a traveling wave the pattern is no 

longer symmetrical about the 
2
   degrees plane, but instead the radiation tends to lean 

in the direction of the current wave. The angle   between the axis of the antenna and the 
direction of maximum radiation becomes smaller as the antenna and the direction of 
maximum radiation becomes smaller as the antenna becomes longer. For the standing 

wave current distribution, the pattern is always symmetrical about the 
2
   degrees 

plane.    
 
3.3 LOOP AND FERRITE ROD RECEIVING ANTENNAS 
 
The loop antenna is made up of one or more turns of wire on a frame, which may be 
rectangular or circular and is very much smaller than one wavelength across. The antenna 
is popular for two reasons: (1) it is relatively compact, lending itself to use with portable 
receivers; and (2) it is quite directive, lending itself to use with direction-finding 
equipment. A loop antenna made of several turns of wire around a rectangular frame 
were popular for earlier model broadcast receivers, with the loop being mounted in the 
back of the cabinet. Recently, these have been replaced by ferrite-rod antennas. When the 
loop is aligned for maximum signal strength, the magnetic flux linkages are BAN  where 
B is the rms magnetic flux density in Tesla, A is the physical loop area in square meter 
and N  is the number of turns. The induced emf is given by  

NBAVS   
When the loop is tuned by means of an external capacitor to the received frequency, the 
voltage at the capacitor terminals is magnified by the quality factor Q  of the circuit. 
Hence, the capacitor voltage becomes 

NBAQQVV S max  
Since the loop is usually much smaller than the received wavelength, the induced voltage 
may be quite small. It may be increased by increasing any one of the factors as shown 
above. The Q is determined by the desired selectivity. The area must be kept small; 
increasing the number of turns increases the coil inductance and changes Q , and even 
changing the flux density affects the Q . However, changing the flux density by using a 



magnetic core can be achieved with a minimal change of Q  using ferrite cores. This has 
been preferred now. The loop antenna is usually used as a direction finding device. 
 
The ferrite-rod antenna is made by winding a coil of wire on a ferrite rod similar to the 
one shown in Fig. Ferrites are materials that exhibit the properties of ferromagnetism. 
The materials exhibit a high relative permeability in the same manner as magnetic 
materials do, but unlike the ferromagnetic metals, they also have a high bulk resistivity. 
This means that at high frequencies, eddy currents induced within the materials are 
practically nonexistent and high-Q coils can be used. A high length-to-diameter ratio for 
the rod gives a high permeability, which is desirable.  
 
The size of the coil is a compromise among several factors. If the coil is too long 
compared to the rod length, the change of permeability with temperature will cause a 
noticeable change in the inductance. If it is too short, the Q will be low. Positioning the 
coil on the core is critical as well, since the effective permeability is a function of 
position of the rod, changing from maximum at the center to a minimum at either end. 
The coil is usually placed near the quarter-point, allowing adjustment in either direction 
to trim the coil inductance. When more than one coil is mounted on the same rod, they 
must be placed at opposite ends to minimize interaction between them. 
 
The coil of wire on the ferrite rod is basically a modified loop antenna, so the induced 
maximum emf appearing at its terminals is given by  
 rs BANFV   
where F  is the modifying factor accounting for coil length, ranging from unity for short 
coils to about 0.7for one that extends the full length of the rod, r  is the effective relative 
permeability of the rod, as measured for the actual coil position and A  is the rod cross-
sectional area  
 
Since the voltage appearing at the terminals is of more importance in a receiving antenna, 
the factor effQl  is often given as a figure of merit for rod antennas. The directional 
properties of the ferrite-rod antenna are similar to those of the loop antenna, although the 
null may not be quite so pronounced.  
A term that has special significance for the receiving antennas is its effective area 
(sometimes also called the effective aperture). It is defined in terms of the directive gain 
of the antenna through the relation 
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The effective area is thus the ratio of power available at the antenna terminals to the 
power per unit area of the appropriately polarized incident wave. That is 

PAWR   
where RW  is the received power and P  is the power flow per square meter for the 
incident wave. When the directivity is used in the expression of the effective area it is 
assumed that all of the available power is delivered to the load. This is the case for a 100 
per cent efficient correctly matched receiving antenna with the proper polarization 



characteristics. For an effective field strength E  parallel to the antenna the power per 
square meter in the linearly polarized received wave is 
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The power is absorbed in a properly matched load connected to the antenna would be 
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Substitution of the value of the radiation resistance in the above gives us 
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3.4 TELEVISION ANTENNA 
 
The basic antenna for TV transmission and reception that make use of the VHF band of 
frequencies (30-300MHz) is the half-wave dipole antenna. This is called a resonant 
antenna as it gives out its best performance only at a particular frequency relative to its 
length. For antennas close to earth, vertically polarized EM waves yield better SNR. 
However, when the antenna is several wavelengths above the ground, horizontally 
polarized waves yield better SNR. The TV signals are transmitted by space wave 
propagation and hence the antenna height must be as high as possible in order to increase 
the line-of-sight distance. Horizontal polarization is the standard for TV broadcasting. 
Horizontal polarization indicates the plane of the electric field. Such a polarization is 
preferred because of the availability of good signal-to-noise ratio (SNR) when antennas 
are placed quite high above the surface of earth. For maximum signal pick-up, the 
receiving antenna should have the same polarization as that of the transmitted signal and 
this is the reason why the TV receiving antennas are aligned horizontally.  
 
LONG WIRE ANTENNAS 
 
In the frequency band from 2 to 30 MHz long wires (several wavelengths long) supported 
by suitable towers may be used as efficient antennas. The best known types are the 
horizontal V antenna, the horizontal rhombic antenna, the vertical V and sloping rhombic 
antennas, the vertical inverted V or half rhombic antenna and the single horizontal-wire 
antenna. Most long wire antennas can be operated as resonant antennas, in which case the 
current on the wire will be a standing wave with the sinusoidal variation. These antennas 
usually operate satisfactorily only at a particular frequency and harmonics of this 
frequency. The input impedance will be highly frequency selective, so only narrow-band 



operation is possible. Most long-wire antennas can also be operated as traveling wave or 
nonresonant structures by terminating the far end of the wire in a suitable resistance 
having a value equal to the characteristic impedance of the antenna viewed as a 
transmission line. In this mode of operation the useful frequency band can be quite large, 
with am acceptable impedance match over the whole range of frequencies.  
 
Various types of long-wire antennas are used for commercial shortwave transmission in 
the frequency range from 2 to 30 MHz when propagation is by means of inonospheric 
reflection. For these applications the optimum angle of radiation is usually from 10 to 300 
relative to the horizontal line in the direction of receiving station.  
 
Since the long-wire antennas are located in the presence of ground, the latter has an 
important effect on the radiation pattern and must be taken into account in the design of 
antenna configuration. In general, the design problem is one of obtaining a directive 
beam at the desired angle relative to the ground for optimum long-distance 
communication via reflection from the ionosphere, along with acceptable input 
impedance characteristics that will facilitate matching the antenna to its feed line. 
 
A monopole antenna consists of one-half of a dipole antenna mounted above the earth or 
a ground plane. It is normally one-quarter-wavelength long, except with space restrictions 
or other factors dictate a shorter length. The vertical monopole antenna is used 
extensively for commercial AM broadcasting (550-1500KHz) in part because it is the 
shortest efficient antenna to use at these long wavelengths (200 to 600m) and also 
because vertical polarization suffers less propagation loss than horizontal polarization 
does at these frequencies. The monopole antenna is also widely used for the land mobile-
communication service. Quarter wavelength antennas are widely used in mobile 
communications with the vehicle itself providing the required ground plane. In the 27-
MHz citizen band, a quarter-wavelength monopole antenna is 2.77m long. Many CB 
band radio users find an antenna of this length undesirable. Consequently antennas for the 
CB radio are often only 1 to 1,5m long and use either base loading or center loading to 
tune the antenna to resonance. The overall efficiency will not be as great as for the full-
length antenna, since the radiation resistance is reduced quite markedly, and the 
unavoidable dissipative losses in the tuning coil, ground screen, and the antenna itself 
will consume a significant fraction of the input power. 
 
Propagation below 2 MHz is made possible by the surface waves for which the 
horizontally polarized waves are attenuated much more rapidly than vertically polarized 
fields. For this reason horizontally oriented long wire antennas are normally not used 
below 2 MHz. In the shortwave band from 2 to 30MHz, where propagation is via 
ionospheric reflection, long-wire antennas are effective and because of their simple 
structures are commonly used. Rhombic and V antennas also find some applications at 
frequencies from 30 to 60 MHz. 
 
At frequencies above about 300MHz slot antennas cut in a metallic surface, such as the 
skin of an aircraft or the wall of a waveguide often prove to be convenient radiators. The 



slot may be fed by a generator or transmission line connected across it or in the case of  
the waveguide, by a guided wave incident upon the slot.  
At very high frequencies (3-30 GHz), the size of the radiating elements become very 
small. It is then convenient to use the concept of “ current sheet radiators” such as slot 
antennas, horns and paraboloid antennas. The radiation from these kind of current sheet 
radiators can be evaluated from the individual current elements exactly as we have done 
for the linear radiators provided the current distribution is known or can be estimated. 
However, in many cases, the current distribution is neither known nor can be easily 
estimated. In that case, a method often used to compute the radiated fields due to 
continuous current distributions is the “ aperture” of the antenna.   
 
The discone antenna, the helical antenna are used in the VHF-UHF range. The former is 
used to radiate an omnidirectional pattern with vertical polarization. It is a broadband 
antenna with usable characteristics over a frequency range of nearly 10:1. It is usually 
designed to be fed directly from a 50-Ω coaxial line and is mounted directly on the end of 
that line. This type of antenna is ideal for base-station operation for urban mobile 
communication systems, since it gives a good omnidirectional pattern, is physically very 
compact and rugged, and is quite inexpensive to construct. Its directional gain along the 
horizontal plane is comparable to that of dipole antenna. 
 
 The log periodic antenna is basically an array of dipoles, fed with alternating 
phase, lined up along the axis of radiation. The element lengths and their spacing all 
conform to a ratio, given as 
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The open-end length L  must be larger than 
2
  if high efficiency is to be obtained. The 

impedance of this antenna is a periodic function of the logarithm of the frequency-hence 
its name. The antenna characteristics are broadband and it has the directional 
characteristics of a dipole array. This type of antenna is often used for mobile-base-
station operations, where many channels must be handled over a single antenna system 
with good directive characteristics.  
 
3.5 APERTURE ANTENNAS 
 
The literal meaning of an aperture is an opening or a slot in a closed surface. An aperture 
antenna therefore, is made out of a closed surface by making a small opening or a slot 
that is made to carry a time-varying current and hence to radiate. Computation of the 
fields is not as straightforward as for the simple geometry antennas that we covered 
previously. The electromagnetic fields in a source free lossless region are completely 
specified by the tangential components of the electric and the magnetic fields on the 
surface enclosing the region. As the region is considered to be source free, the tangential 



fields on the surface and the fields inside the region are produced by sources external to 
the region. As we may observe later, the aperture antenna is analyzed by making use of 
the tangential components of the electric field and the magnetic field. We know that, 
across the boundary of two media, the tangential components of the electric field E and 
H .  If the fields in a plane aperture are aE  and aH , then 

aS n HJ  ˆ  and  

aS n EM  ˆ  
where SJ is the surface current density and SM is the magnetic current density. The 
concept of magnetic current density may sound absurd in the first place as it would 
require the flow of magnetic charges in a closed path and this is not possible because of 
the fact that magnetic charges or monopoles do not exist. However, the concept of one 
would help analyzing the behavior of structures that radiate from apertures. As we have 
seen previously, the wire currents are suitably excited by high frequency currents to 
produce radiated fields. However, we cannot apply the same principle to an aperture 
simply because of the fact that it is an opening or a cavity (shape does not matter now) in 
an otherwise closed surface and conventional electric current cannot flow in such an 
opened out structure. We, therefore need a different approach to evaluate the radiated 
fields due to an aperture like structure made in a metallic surface. This approach makes 
use of Huygen’s secondary wave principle following which the two expressions are 
written. A large square surface of a plane wave front acts like a rectangular array of 
Huygen’s sources, all fed in phase. The radiation pattern of the array is, therefore, 
obtained by multiplying the unit pattern of the element by the array factor. The magnetic 
vector potential is expressed as 
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We have previously seen from (2.75) that the electric field can also be evaluated in terms 
of the magnetic vector potential. Combined with the gradient of the scalar potential, we 
have  
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Similarly, we may define an electric vector potential due to the magnetic current flow as 
the following: 
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Here, 'V is the volume that contains the magnetic source current SM . In similar lines, we 
may write 

FE 

1   

Making use of 





 a

r
F

a
r
F









 F  

The electric field in terms of the electric vector potential is expressed as 
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and the corresponding magnetic field as 

 FFH . j  
The total electric field due to the magnetic vector potential, electric vector potential, 
magnetic scalar potential and electric scalar potential is expressed as 
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and similarly, 
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Now, we can express the radiated field component due to all the factors combined 
together as 
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Separating the   and the  components, we have 
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The corresponding magnetic fields are expressed as 
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Next, we wish to evaluate the radiated fields due to a rectangular aperture of size 
 ba placed in the xy plane and there is an electric field along the x axis and a 
magnetic field along the y  axis. Further, these fields are assumed to be constants over 
the aperture. Let ya aE0E and xa aH 0H . The magnetic surface current through the 
aperture is 

xyzS aEaEan 00ˆ  EM  
Similarly, the electric current density through the aperture is 

yxzaS aHaHan 00ˆ  HJ  
The electric vector potential is 
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Hence, the integral reduces to computing the exponential term. We find that, a little 
manipulation of (2.49) results in the following simplified expression for the distant point 
located R units away from the origin. Therefore, 
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Substituting this in (A), we have 
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where I represents the integral over the aperture surface and G  is the familiar scalar 
spherical wave function given as 
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The integral I  is evaluated as 
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where  
x
xxSa sin

 .The electric vector potential has a component along the x axis 

only. In a similar manner, we can evaluate the magnetic vector potential also by writing 
the following: 

     

 

  ''exp.
4

'exp
4

'exp',','
4

,,

0

'
0

'

dydx
R

RjaH

dv
R

RjaH

dv
R

Rjzyxr

S
y

V
y

V
S


























 JA

 

This turns out to be  
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We know from elementary coordinate geometry that 
  sin,coscos xx AAAA   and 

  cos,sincos yy FFFF   
From all these above discussions, it is clear that the magnetic vector potential has 
component along the y axis only. We now combine these two results and write the 
overall radiated fields as 
 
Therefore, 
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Similarly,  
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From the expressions for the electric field in the    plane, we observe that the 
maximum value of  xSa  is obtained for 0x . This corresponds to the case of 0 . 
The associated magnetic fields are given as (B). In the far field region, the radiation 
intensity is 2r  times the time-averaged power density and this is expressed as 
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Substitution of the necessary expressions in ©  gives us 
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Therefore, the maximum radiation intensity is obtained by substituting 0  in (D) and 
hence we obtain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The radiated power passing through the aperture area is found out by evaluating the 
Poynting vector and integrating it over the aperture. Doing this, we obtain 
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The directivity reduces to 
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The expression for directivity shows that ratio of the directivity to the aperture area is a 

constant which is equal to 
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only on the wavelength or frequency of operation. Less the wavelength, higher is the 
value. However, if the current distribution is not uniform, then an equivalent uniform 
aperture area is defined as the maximum effective aperture area and then the expression 
for directivity gets modified as 
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where eA is the effective aperture area. For a uniform current distribution, the effective 
area is the same as that of the actual area of the aperture. 
 
3.6 Rectangular Waveguides 
 
A rectangular waveguide is used to carry energy from a source to a destination at 
microwave and optical frequencies. This is a hollow metallic pipe with a rectangular 
cross section. It is assumed that the walls of the waveguide have infinite conductivity and 
the medium filing up the space is an ideal dielectric with a given permeability, 
permittivity and no conductivity. The waveguide is assumed to have a rectangular cross 
section of dimension ba  and is infinitely long. We may assume here that ba   and the 
broader dimension; a  is oriented along the x axis and the shorter dimension b  is 
aligned along the y  axis. The length of the waveguide is aligned along the z axis. We 
further assume wave propagation to take place along the positive z axis. 

  
A hollow rectangular waveguide with dimension ba   
 
We may note that the wave propagation inside a hollow structure such as the one shown 
in Fig. takes place in the form of modes. It is no longer the uniform plane waves or the 
TEM mode that is possible in an unbounded homogeneous medium. As we may see, the 
walls of the waveguide are made of a good conductor while the hollow space is filled 
with some kind of dielectric. Hence, any wave propagating inside the space has to be 
governed by boundary conditions along the two dimensions; x and the y axes. As we 
shall see, application of the boundary conditions at the cross section gives rise to modes 
for the waves. A mode is characterized by an integer number of half sinusoids along the 
particular dimension under consideration. The simplest being just half a sinusoid 
typically known as the dominant mode. The waves have to be transverse electric (TE), 
transverse magnetic ™ waves or some definite combination of these two known as hybrid 
modes. As we know, the longitudinal electric field is zero while there exists a nonzero 
longitudinal magnetic field for the TE waves.  Let us analyze the TE waves first. 
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Transverse Electric (TE) Waves 
 
As the magnetic field has a nonzero component along the z axis, the wave equation 
becomes 
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Expansion of this gives us 
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Performing the double differentiation, we obtain 
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Dividing both sides by XYZ  
Now, we can equate each of these terms to a constant as shown below 
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The differential equation becomes 
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In the above equation, we have made use of 
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We have, therefore 
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The complete solution of the longitudinal magnetic field, therefore becomes 
        tjzjByCByCAxCAxCtzyxH z  expexpcossincossin,,, 4321   

We know that the tangential electric fields are xE and yE which are related to the 
magnetic field zH in the following manner: 
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And similarly, 
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The waveguide walls are metallic surfaces bounded by 0x to ax   on the broader side 
and  0y to by  on the narrower side. The tangential components of the electric fields 
are zero at the walls. Therefore, both xE and yE are zero, however, at different surfaces. 
The xE field is zero at 0y and by   while the yE is zero at 0x and ax   , 
Substituting these into the two tangential electric fields, we have 03 C  obtained for 

xE and 01 C for yE . Similarly, at the ends of the cross section, we get 
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Similarly, 
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The resultant solution, therefore becomes 
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We have expressed KCC 42  
Similarly, 

   

   tjzjy
b
nx

a
mK

a
m

h
j

tjzjy
b
nCx

a
mAC

a
m

h
jEy





expexpcossin

expexpcossin

2

422













































 

The tangential magnetic fields are expressed as 
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and finally, 
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We may further verify that, 
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The integers m and n together define the order of the mode the wave takes on to 
propagate down the walls of the waveguide. The mode is designated as mnTE mode. We 
observe from the expressions for the transverse fields that, either of the integers may be 
zero for these to be nonzero as each of the four fields contain a half cosine term given by 
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field zH becomes non zero, however, all the transverse fields become zero. As we know, 
a magnetic field variation in space is not possible without a corresponding electric field 
and vice versa. Thus, there can be no 00TE mode. We can have, as the lowest order modes 
corresponding to either 0m giving rise to 01TE mode or a 10TE mode corresponding to 

0n . 
Prob: Establish the field relations from the four basic Maxwell’s equations.  
Prob: Establish the dimensional of 2h . What is its significance? 
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Transverse Magnetic (TM) Waves 
 
Similar to the TE waves, the TM waves are characterized by a longitudinal electric 
field; 0zE and the magnetic field 0zH . Therefore, the equation governing the TM 
mode is expressed as 
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Expansion of this gives us 
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Performing the double differentiation, we obtain 

0111

0

2
2

2

2

2

2

2

2
2

2

2

2

2

2









dz
Zd

Zdy
Yd

Ydx
Xd

X

XYZ
dz
ZdXY

dy
YdZX

dx
XdYZ

 

Dividing both sides by XYZ  
Now, we can equate each of these terms to a constant as shown below 
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The differential equation becomes 
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In the above equation, we have made use of 
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The complete solution of the longitudinal electric field, therefore becomes 
        tjzjByCByCAxCAxCtzyxE z  expexpcossincossin,,, 4321   (A) 

The zE field is a tangential field along the z axis which is assumed to be infinite in 
extent. Also, we note that 

0zE  at 0x  and ax  and likewise 0zE  at 0y  and by   
Substitution of these in (A) gives us 02 C and further, 04 C . Again, we have 
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The complete solution to the longitudinal field then is, 
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In the above, we have expressed KCC 31  
The other transverse fields are obtained as follows: 
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and, 
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As before, we note that 
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The integers m and n together define the order of the mode the wave takes on to 
propagate down the walls of the waveguide. The mode is designated as mnTM mode. We 
observe from the expressions for the transverse fields that, if either of the integers is zero, 
then the fields become zero as each of the four fields contain a half sine term given by 
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ncos . Thus, there can be no 00TM mode. Similarly, as the lowest 

order modes corresponding to either 0m giving rise to 01TM mode or a 10TM mode 
corresponding to 0n  are also not possible. The lowest order mode, therefore is attained 
only when both the integers are at least equal to one, nm  1 . This is the lowest order 
or the fundamental mode of a TM wave known as 11TM mode.  
 



MODULE-IV 
 
Exercise: Enumerate the fundamental differences between a TE wave and a TM wave.  
 
We observe from all the above discussions that for both the waves, fields exist in discrete 
patterns of half sinusoids or cosinusiods corresponding to only integer values of m and 
n . Therefore, m and n  can take on only discrete values and not a continuum of values. 
This makes the field pattern for each of the sets of m and n unique and also the 
fundamental mode of propagation. We can also see that, for the guided waves, other than 
the fundamental mode, all other modes if allowed to exist, are the higher order modes. 
This essentially means an integer number of half cycles contained along the appropriate 
dimension. For example, if a mode is given as 22TE , it simply means that there is one full 
cycle of field variation (two half cycles of alternating polarity) each along the x axis 
and the y axis. 
 
At this point, we would like to find out which modes can be supported by a given 
waveguide. In order to answer that, we note that 
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to exist in the waveguide, the value of   must be real. The frequency at which   
changes from real to imaginary is known as the cut off frequency, given as  
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It follows from (D) that, the fundamental mode for a TE wave has the following cut off 
frequencies corresponding to 10TE  as 
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And for the TM wave, the fundamental mode has a cut off frequency given as 



 





















































22

22

11

11
2

1

2
1

ba

ba
TMf c






 

As ba  , therefore, we have 
     110110 TMfTEfTEf ccc   

We, therefore see that the lowest frequency that can propagate inside a rectangular 
waveguide corresponds to the 10TE  mode. No power transfer is possible corresponding to 
a frequency lower than the cutoff frequency. This is simply due to the fact that at 
frequencies lower than the cut off frequency, the propagation constant   becomes 
imaginary. Thus, the term    zzj  expexp   does not represent a wave. In this aspect 
then, a waveguide can be thought of as a high pass filter allowing frequencies above the 
cut off frequency. We can further see that, as the order of the mode increases, the cutoff 
frequency similarly increases. The 10TE  is known as the dominant mode of a rectangular 
waveguide.  
Similar to the cutoff frequency, the cut off wavelength for a given mode is given as 
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This is due to the fact that the intrinsic velocity of a wave in a waveguide is given as 
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It follows from the above discussion that, the cutoff wavelength corresponding to the 
dominant 10TE  mode is  
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The longest wavelength that can propagate inside a rectangular waveguide corresponds to 
the dominant mode and is equal to twice the size of its broader dimension.  
 
 
 
 
 
 
 
 



 



 



 



 



 



 



 



 



 
 



 



 



 



 



 



 



 
 
 
 
 
 

The Helical Antenna 



 



 



 



 
 



 



 
 
 
 
 
 
 
 
 
 
 
 

Monofilar Axial- Mode Single turn Patterns 



 



 



 



 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



 



 



 



 



 



Long – Wire Antennas 

 



 



 



 



 
 
 
 
 
 
 
 



 



 



 



Ground Interference Effects 

 



 



 
 

 
 
 
 



MODULE-V 
 

USASE OF EM WAVES IN RADAR 
RADAR SYSTEM 
 
Radar is an electromagnetic system for the detection and location of reflecting objects 
such as aircraft, ships, spacecraft, vehicles,, people and the natural environment. It 
operates by radiating energy into space and detecting the echo signal reflected from an 
object, or target. The reflected energy that is returned to the radar not only indicates the 
presence of a target, but by comparing the received echo signal with the signal that was 
transmitted, its location can be determined along with other target-related information. 
Radar can perform its function at long or short distances and under conditions impervious 
to optical and infrared sensors. It can operate in darkness, haze, fog, rain and snow. Its 
ability to measure distance with high accuracy and in all weather is one of its most 
important attributes. 
 
The basic principle of radar is shown in Fig.1. A transmitter generates an electromagnetic 
wave (such as a short pulse of sinewave) that is radiated into space by an antenna. A 
portion of the transmitted energy is intercepted by the target and radiated in many 
directions. The reradiation directed back towards the radar is collected by the radar 
antenna, which delivers it to a receiver. The receiver processes it to detect the presence of 
the target and determine its location. A single antenna is usually used on a time-shared 
basis for both transmitting and receiving when the radar waveform is a repetitive series of 
pulses. The range, or distance, to a target is found by measuring the time it takes for the 
radar signal to travel to the target and return back to the radar. This is called range in 
radar nomenclature. The target’s location in angle can be found from the direction of the 
narrow-beamwidth radar antenna points when the received echo signal is of maximum 
amplitude. If the target is in motion, there is a shift in the frequency of the received echo 
signal due to the Doppler effect. This frequency shift is proportional to the velocity of the 
target relative to the radar (also called the radial velocity). The Doppler frequency shift is 
widely used in radar as the basis of separating desired moving targets from fixed 
unwanted “clutter” echoes reflected from the natural environment such as land, sea or 
rain. Radar can also provide information about the nature of the target being observed.   
 
The term radar refers to radio detection and ranging. The name reflects the importance 
placed by the early workers in this field on the need of a device to detect the presence of 
a target and to measure its range. Although modern radar can extract more information 
from a target’s echo signal than its range, the measurement of range is still one of its most 
important functions. There are no competitive techniques that can accurately measure 
long ranges in both clear and adverse weather as well as can radar. 
 
Radars can operate in various modes by radiating different frequencies, with different 
polarizations. The radar can also employ various waveforms with different pulse widths, 
pulse repetition frequencies, or other modulations; and different forms of processing 
different types of clutter, interference, and jamming. The various waveforms and 
processing need to be selected wisely. A trained operator can fulfill this function, but an 



operator can become overloaded. When there are many available system options, the 
radar can be designed to automatically determine the proper mode of operation and 
execute what is required to implement it. The mode of radar operation is often changed as 
a function of the antenna look-direction and/or range, according to the nature of the 
environments.     
Conventional radars generally operate in the microwave region. Operational radars in the 
past have been at frequencies ranging from about 100MHz to 36 MHz, which covers 
more than eight octaves. These are not necessarily the limits. Operational HF over-the-
horizon radars operate at frequencies as low as a few megahertz. At the other end of the 
spectrum, experimental millimeter wave radars have been at frequencies higher than 240 
GHz. The various frequency ranges of operation as used in radar systems is shown in 
Table 1. 
 
Table No.1 Part of electromagnetic spectrum used in RADAR applications 
Band Designation Nominal Frequency range Specific frequency ranges 

HF 3-30 MHz  
VHF 30-300 MHz 138-144 MHz 

216-225 MHz 
UHF 300-1000 MHz 420-450 MHz 

850-942 MHz 
L 1-2 GHz 1215-1400 MHz 
S 2-4 GHz 2300-2500 MHz 

2700-3700 MHz 
C 4-8 GHz 5250-5925 MHz 
X 8-12 GHz 8500-10,680 MHz 

Ku 12-18 GHz 13.4-14.0 GHz 
15.7-17.7 GHz 

K 18-27 GHz 24.05-24.25 GHz 
Ka 27-40 GHz 33.4-36 GHz 
V 40-75 GHz 59-64 GHz 
W 75-110 GHz 76-81 GHz 

92-100 GHz 
mm 110-130 GHz 126-142 GHz 

144-149 GHz 
231-235 GHz 
238-248 GHz 

 
 
RANGE OF A TARGET: 
 
The most common radar signal, or waveform is a series of short duration, somewhat 
rectangular-shaped pulses modulating a sinewave carrier. (This is sometimes called a 
pulse train.) The range to a target is determined by the time rt  it takes the radar signal to 
travel to the target and back. As electromagnetic waves travel in free space with the speed 



of light, the time for the signal to travel to a target located at range R  and return back to 

the radar is
c
R2  , the range to a target is 

2
r

r
ctR   

This means that one microsecond of round-trip travel corresponds to a distance of 150 
meters.  (How to measure this time of return? Will autocorrelation of the two signals is 
useful?)  
 
Maximum unambiguous range: 
 
Once a signal is radiated into space by a radar, sufficient time must elapse to allow all 
echo signals to return to the radar before the next pulse is transmitted. The rate at which 
pulses may be transmitted, therefore is determined by the longest range at which targets 
are expected. If the time between pulses pt  is too short, an echo signal from a long-range 
target might arrive after the transmission of the next pulse and be mistakenly associated 
with that pulse rather than the actual pulse transmitted earlier. This can result in an 
incorrect or ambiguous measurement of the range. Echoes that arrive after the 
transmission of the next pulse are called second-time-around echoes (or multiple-time-
around echoes if from even earlier pulses). Such an echo would appear to be at a closer 
range than actual and its range measurement could be misleading if it were not known to 
be a second-time-around echo. The range beyond which targets appear as second-time-
around echoes is the maximum unambiguous range unR , and is given by 

p

p
un f

cct
R

22
  

where pt  is the pulse repetition period and 
p

p tf 1  is the pulse repetition frequency 

(prf), usually given in hertz or pulses per second (pps). A plot of the maximum 
unambiguous range as a function of the prf is shown in Fig.2. The term pulse repetition 
rate is also used interchangeably with pulse repetition frequency. 
 
THE SIMPLE FORM OF RADAR EQUATION 
 
The radar equation relates the range of a radar to the characteristics of the transmitter, 
receiver, antenna, target, and the environment. It is useful not only for determining the 
maximum range at which a particular radar can detect a target, but it can serve as a means 
for understanding the factors affecting radar performance. It is also an important tool to 
aid in radar system design. In this section, the simple form of the radar range equation is 
derived. 
 
If the transmitter power tP  is radiated by an isotropic antenna, the power density at a 
distance R  from the radar is equal to the radiated power divided by the surface area 

24 R  of an imaginary surface of radius R , or 



Power density at range R  from an isotropic antenna = 24 R
Pt


 

Power density is measured in units of watts per square meter. Radars, however, employ 
directive antennas (with narrow beamwidths) to concentrate the radiated power tP in a 
particular direction. The gain of an antenna is a measure of the increased power density 
radiated in some direction as compared to the power density that would appear in that 
direction from an isotropic antenna. The power density at the target from a directive 
antenna with a transmitting gainG  is 

Power density at range R  from a directive antenna = 24 R
GPt


 

The target intercepts a portion of the incident energy and reradiates it in various 
directions. It is only the power density reradiated in the direction of the radar (the echo 
signal) that is of interest. The radar cross section of the target determines the power 
density returned to the radar for a particular power density incident on the target. It is 
denoted by   and is often called, for short, target cross section, radar cross section, or 
simply cross section. The radar cross section is defined by the following 

Reradiated power density back at the radar = 22 4
.

4 RR
Pt





 

The radar cross section has units of area, but it can be misleading to associate the radar 
cross section directly with the target’s physical size. The radar antenna captures a portion 
of the echo energy incident on it. The power received by the radar is given as the product 
of the incident power density times the effective area eA  of the receiving antenna. The 
effective area is related to the physical area by AA ae   where a  is the antenna 
aperture efficiency. The received signal power is then  
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The maximum range of a radar maxR  is the distance beyond which the target cannot be 
detected. It occurs when the received signal power rP  just equals the minimum 
detectable signal minS . Substituting rPS min , and rearranging the terms, we obtain 
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This is the fundamental form of the radar equation. It is also called radar range equation. 
The important parameters are the transmitting gain and the receiving effective area. The 
transmitter power has not been specified as either the average or the peak power. It 
depends on how minS  is defined. Here, tP  denotes the peak power. 
If the same antenna is used for transmitting and receiving, as it usually is in radar, the 
relationship between the transmit gain G  and the receiver effective area eA  is 
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Use of these expressions yield two other forms of radar equation. 
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A major advance in radar was made with the invention of the high-power microwave 
cavity magnetron at the University of Birmingham in England early in WW II. The 
magnetron dramatically changed the nature of radar as it existed up to that time by 
allowing the development of radars with small antennas that could be carried on ships 
and aircraft, and by land-mobile systems. Most countries involved in early radar research 
recognized the importance of obtaining high power at microwave frequencies and tried to 
push the conventional magnetron upwards in power. 
 
The use of the Doppler effect in the MTI pulse radar was perfected to separate desired 
aircraft targets from undesired large underground echoes. 
 
High-power stable amplifiers such as klystron, traveling wave tube, and solid state 
transistor allowed better application of the Doppler effect, use of sophisticated 
waveforms, and much higher power than could be obtained with the magnetron. 
 
Highly accurate angle tracking of targets became practical with monopulse radar. 
 
Pulse compression allowed the use of long waveforms to obtain high energy and 
simultaneously achieve the resolution of a short pulse by internal modulation of the long 
pulse. 
 
The airborne synthetic aperture radar (SAR) provided high resolution map-like imaging 
of ground scenes. 
 
Airborne radars using Doppler processing methods gave rise to airborne MTI and pulse 
Doppler radars, which were able to detect aircraft in the midst of heavy ground clutter. 
 
The electronically steered phased array antenna offered rapid beam steering without 
mechanical movement of the antenna. 
 
HF over-the-horizon radar extended the detection range for aircraft by a factor of ten, to 
almost 2000 nmi. Radar became more than a blob detector by extracting information 
from the echo signal to provide target recognition. 
 
Radar has become an important tool for meteorologist and as an aid for safe efficient air 
travel by observing and measuring precipitation, warning of dangerous wind shear and 
other hazardous weather conditions, and for providing timely measurements of the 
vertical profile of wind speed and direction. 
 



The rapid advances in digital technology made theoretical capabilities with digital signal 
processing and digital data processing. 
 
The ability of a radar receiver to detect a weak signal is limited by the ever-present noise 
that occupies the same part of the frequency spectrum as the signal. The weakest signal 
that can just be detected by a receiver is the minimum detectable signal. Use of the 
minimum detectable signal is not common to detect echo signals from targets. 
 
Detection of a radar signal is based on establishing a threshold at the output of the 
receiver. If the receiver output is large enough to exceed threshold, a target is said to be 
present. If the receiver output is not of sufficient amplitude to cross the threshold, only 
noise is said to be present. This is called threshold detection.  
 
When a large echo signal from a target is present, it can be recognized on the basis of its 
amplitude relative to the rms noise level. If the threshold level is set properly, the receiver 
output should not normally exceed the threshold if a strong target echo signal were 
present along with the noise. If the threshold level were too low, noise might exceed it 
and be mistaken for a target. This is called a false alarm. If the threshold were set too 
high, noise might not be large enough to cause false alarms, but the weak target echoes 
might not exceed the threshold and would not be detected. When this occurs, it is called a 
missed detection. The threshold is set according to the classical detection theory. 
 
Almost all radars employ matched filters for maximization of signal to noise ratio. A 
matched filter does not preserve the shape of the waveform. 
 
The selection of a proper threshold is a compromise that depends on how important it is 
to avoid the mistake of (1) failing to recognize a target signal that is present (missed 
detection) or (2) falsely indicating the presence of a target signal when none exists (false 
alarm). The SNR is a better measure of a radar’s detection performance than is the 
minimum detectable signal.    
 
At microwave frequencies, the noise with which the target echo signal competes is 
usually generated within the receiver itself. If the radar were to operate in a perfectly 
noise-free environment so that no external sources of noise accompany the target signal, 
and if the receiver itself were so perfect that it did not generate any excess noise, there 
would still be noise generated by the thermal agitation of electrons in the ohmic portion 
of the receiver input stages. This is called thermal noise. Its magnitude is proportional to 
the bandwidth and the absolute temperature of the ohmic portions of the input circuit. 
The available thermal noise power generated at the input of a receiver of bandwidth nB  at 
a temperature T  is 

nkTBN   
where 231038.1 k  J/deg. The term available means that the device is operated with a 
matched input and a matched load. The bandwidth of a superheterodyne receiver (and 
almost all radar receivers are of this type) is taken to be that of the IF amplifier (or 
matched filter). 
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This equation states that the noise bandwidth is the bandwidth of the equivalent 
rectangular filter whose noise power output is the same as the filter with the frequency 
response function  fH . Noise bandwidth is not the same as the more familiar half power 
bandwidth. The half power bandwidth is a reasonable approximation for many practical 
radar receivers. Thus the half power bandwidth B is usually used to approximate the 
noise bandwidth nB . 
 
The noise power in practical receivers is greater than that from thermal noise alone. The 
measure of the noise out of a real receiver to that from the ideal receiver with only 
thermal noise is called noise figure and is defined as 
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where outN = noise out of the receiver, and aG  is the available gain. The factor  
21

0 104 kT  W/Hz at room temperature. The available gain aG is the ratio of the signal 
out, outS  to the signal inS  with both the output and the input matched to deliver maximum 
output power. The input noise inN  in an ideal receiver is equal to nBkT0 . Hence the noise 
figure can be written as 
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This equation shows that the noise figure may be interpreted as a measure of the 
degradation of the signal-to-noise ratio as the signal passes through the receiver. 
 
The input signal is 
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If the minimum detectable signal minS  is that value of inS  which corresponds to the 

minimum detectable SNR at the output of the IF, 
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Use of this gives us another expression for the maximum range of the radar 
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From the above equation we do observe that the minimum detectable signal is replaced in 
the radar equation by the minimum detectable SNR  minNS . The advantage is 



that  minNS is independent of the receiver bandwidth and noise figure. It can be 
expressed in terms of the probability of detection and probability of false alarm, two 
parameters that can be related to the radar user’s needs.  
 
The signal-to-noise ratio in the above is that at the output of the IF amplifier, since 
maximizing the signal-to-noise ratio at the output of the IF is equivalent to the video 
output where threshold decision is made. 
 
TRANSMITTER POWER 
 
The power tP  is the peak pulse power. The average power avP  of a radar is also of 
interest since it is a more important measure of a radar performance than the peak power. 
It is defined as the average transmitter power over the duration of the total transmission. 
If the transmitter waveform is a train of rectangular pulses of width   and constant-
pulse-repetition period pp fT 1 , the average power is related to the peak power by 
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The radar duty cycle can be expressed as tav PP  or pT . Pulse radars might typically 
have duty cycles of from 0.001 to 0.5, more or less. A CW radar has a duty cycle of 
unity. The duty cycle depends on the type of waveform, the pulse width, whether or not 
pulse compression is used, and problems associated with range and Doppler ambiguities, 
and the type of transmitter employed. 
 
Writing the radar range equation in terms of average power, we obtain 
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For simplicity, the fluctuation loss fL  has been set to unity in this equation. The energy 
per pulse is tp PE   is also equal to pav fP . The radar range equation can also be 
written as, in terms of energy  
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where TE is the total energy of the n  pulses, which equals pnE . 
 
PULSE REPETITION FREQUENCY 
 
The pulse repetition frequency (prf) is determined by the maximum unambiguous range 
beyond which targets are not expected. The prf corresponding to a maximum 
unambiguous range unR  is given by cRf unp 2  where c  is the velocity of propagation. 
There are times, however, when echoes might appear from beyond the maximum 
unambiguous range, especially for some unusually large target or clutter source (such as a 



mountain), or when anomalous propagation conditions occur to extend the normal range 
of the radar beyond the horizon. Echo signals that arrive at a time later than the pulse-
repetition period are called second-time-around echoes. They are also called multiple-
time-around echoes, particularly when they arrive from ranges greater than unR2 . The 
apparent range of these unambiguous echoes can result in error and confusion. Another 
problem with multiple-time-around echoes is that clutter echoes from ranges greater than 

unR  can mask unambiguous target echoes at the shorter ranges. 
 
Some types of radars, such as pulse Doppler radars, always operate with a prf that can 
result in range ambiguities. Range ambiguities are tolerated in a pulse Doppler radar in 
order to achieve the benefits of a high PRF when detecting moving targets in the midst of 
clutter. Resolving the range ambiguities is an important part of operation of pulse 
Doppler radars.  
 
The existence of multiple-time-around echoes cannot be readily recognized with a 
constant prf waveform. Let us consider three targets labeled A,B and C in the following 
figure. Target A is within the unambiguous range interval unR , target B is at a distance 
greater than unR but less than unR2 , while target C is greater than unR2 but less than unR3 . 
Target B is a second-time-around echo; target C is a multiple-time-around echo. When 
these three pulse repetition intervals, or sweeps, are superimposed on a radar display, the 
ambiguous echoes look no different from the unambiguous range echo of A. Only the 
range of A is correct, but it cannot be determined from this display that the other two are 
not at their apparent range.  
 
Ambiguous-range echoes can be recognized by changing the PRF of the radar. When the 
PRF is changed, the unambiguous echo (at a range less than unR ) remains at its true range. 
Ambiguous-range echoes, however, appear at different apparent ranges for each PRF. An 
example of how these three echoes might appear on an A-scope is shown in the figure 
below. A similar effect would be seen on the PPI. Thus the ambiguous target ranges can 
be readily identified. 
 
If the first pulse repetition frequency 1f  has an unambiguous range 1unR  and if the 
apparent range measured with prf 1f  is denoted 1R , then the true range is one of the 
following 

    ...,2, 1111,1 orRRorRRorRR ununtrue   
Anyone of these might be the true range. To find which is correct, the prf is changed to 

2f  with an unambiguous range 2unR , and if the apparent measured range is 2R , the true 
range is one of the following 

    ...,2,, 21212 orRRorRRorRR ununtrue   
The correct range is that value which is the same with the two prfs. In theory, two prfs 
can resolve the range ambiguity; but in practice, three prfs are often used for increased 
accuracy and avoiding false values. 
 



The pulse repetition frequency may be changed pulse to pulse, every half beamwidth 
(with a scanning antenna), or on every rotation of the antenna.  
 
ANTENNA PARAMETRS 
 
Almost all radars use directive antennas with relatively narrow beamwidths that direct the 
energy in a particular direction. The antenna is an important part of a radar. It serves to 
place energy on target during transmission, collect the received echo energy reflected 
from the target, and determine the angular location of the target. There is always a trade 
between antenna size and transmitter size when long-range performance is required. If 
one is small the other must be large to make up for it. This is one reason why large 
antennas are generally desirable in most radar applications when practical considerations 
do not limit their physical size. Thus far, the antenna has been thought of as a 
mechanically steered reflector. Radar antennas can also be electronically steered phased 
arrays.   
 
Antenna Gain The antenna gain   ,G  is a measure of the power per unit solid angle 
radiated in a particular direction by a directive antenna compared to the power per unit 
solid angle which would have radiated by an omnidirectional antenna with 100% 
efficiency. The gain of an antenna is 
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This is the power gain and is a function of direction. If it is greater than unity in some 
directions, it must be less than unity in other directions. There is also the directive gain, 
which has a similar definition except that the denominator is the power radiated by the 
antenna per 4  steradians rather the power accepted from the transmitter. The difference 
between the two is that the power gain accounts for losses within the antenna. The power 
gain is more appropriate for the radar equation than the directive again, although there is 
usually little difference between the two in practical radar antennas, except for the phased 
array. The power gain and the directive antenna of a radar antenna are usually considered 
to be the same here. When they are significantly different, then the distinction between 
the two must be made. The maximum power gain is denoted as G . 
 
Effective Area and Beamwidth 
 
The directive gainG  and the effective area eA  of a lossless antenna are related as 
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where a  is the antenna aperture efficiency and A  is the physical area of the antenna. 
The gain of an antenna is approximately equal to 
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where B and B  are the azimuth and elevation half-power beam widths, respectively, in 
degrees. This results in a gain of 44 dB for a one-degree pencil beam. The half-power 
beamwidth of an antenna also depends on the nature of the aperture illumination and, 
therefore, the sidelobe level. When no specific information is available regarding the 
nature of the antenna, the following relation holds good between beamwidth and antenna 
dimension 

DB
 65

    degrees 

where the wavelength   has the same units as the aperture dimension D . When D  is the 
horizontal dimension of the antenna, the beamwidth B  is the azimuth beamwidth; when 
D  is the vertical dimension, B  is the elevation beamwidth. The above expression might 
apply for an antenna with 25 to 28 dB peak sidelobe level. 
 
The half-power beamwidth of an antenna can be measured somewhat accurately, but the 
antenna gain “is probably one of the least accurate measurements made on an antenna 
system”. 
 
Revisit Time 
 
The revisit time is the time that an antenna takes to return to view the same region of 
space. It usually represents a compromise between (1) the need to collect sufficient 
energy (a sufficient number of pulses) for the detection of weak targets and (2) the need 
to have a rapid re-measurement of the location of a moving target so as to quickly 
determine its trajectory. The revisit time is also called the scan time; and both are 
inversely related to the rotation rate (rpm) of a scanning antenna. The revisit time of long-
range civil air-traffic-control radars are generally in the vicinity of 10 to 12 s, 
corresponding to an antenna rotation rate of 6 to 5 rpm. Military air-surveillance radars, 
unlike civil radars, have to detect and track high-speed maneuvering targets. A revisit 
time of 10 to 12 seconds is too long. Revisit times for long-range military radars are more 
like 4 seconds (15 rpm). Short-range military radars that must detect an quickly respond 
to low-flying high-speed targets that pop up over the horizon generally require revisit 
times of 1 to 2 seconds (60 to 30 rpm), depending on the radar type and design. A small 
civil marine radar commonly found on boats and ships might have a rotation rate of about 
20 rpm (3-s revisit time). High-resolution radars which monitor the ground traffic at 
major airports, such as the ASDE generally have rotation rates 60 rpm. 
 
BEAM SHAPE 
 
Radars employ either fan beams or pencil beams. The beam width of the pencil beam 
shown in diagrams below in the horizontal plane is equal or almost equal to the beam 
width in the vertical plane. Its beamwidth is generally less than a few degrees; one degree 
might be typical. It is found in radars that must have accurate location measurement and 
resolution in both azimuth and elevation. The pencil beam is popular for tracking radars, 
3-D radars (rotating air-surveillance radars that obtain elevation angle measurement as 
well as azimuth and range), and many phased array radars. 



The fan-beam antenna shown in figure below has one angle small compared to the other. 
In air-surveillance radars that use fan beams, the azimuth beamwidth might typically be 
one or a few degrees, while the elevation beamwidth might be perhaps four to ten times 
the azimuth beamwidth. Fan beams are found with 2-D (range and azimuth) air-
surveillance radars that have to search out a large volume of space. The narrow 
beamwidth is in the horizontal coordinate so as to obtain a good azimuth angle 
measurement. The elevation beamwidth is broad in order to obtain good elevation 
coverage, but at the sacrifice for an elevation angle measurement. 
 
A single pencil beam has difficulty searching out a large angular volume. Employing a 
number of scanning pencil beams can solve this problem, as is found in some 3-D radars. 
Sometimes in a 3-D radar a stacked-beam coverage is used in the vertical dimension. 
This consists of a number of contiguous fixed pencil beams as shown in the following 
figure. Six to sixteen contiguous beams have been typical in the past.  
 
Usually the shape of a fan beam has to be modified to obtain more complete coverage. 
An example is the cosecant-squared shaped beam as shown below. 
 
RECEIVER BANDWIDTH REQUIREMENTS 
 
The bandwidth of the receiver corresponds to the bandwidth of the transmitter and its 
pulse width. The narrower the pulses, the greater is the IF and video bandwidth required. 
The RF bandwidth is normally greater than these, as in other receivers. With a given 
pulse duration T , the receiver bandwidth may still vary, depending on how many 
harmonics of the pulse repetition frequency are needed to provide a received pulse having 
a suitable shape. If vertical sides are required for the pulses in order to give a good 
resolution, a large bandwidth is required. The bandwidth must be increased if more 
information about the target is required, but too large a bandwidth will reduce the 
maximum range by admitting more noise. 
 
The IF bandwidth of a radar receiver is made Tn , where T  is the pulse duration and 
n is a number whose value ranges from under 1 to over 10, depending on the 
circumstances. Values of n  from 1 to about 1.4 are the most common. Because pulse 
widths normally range from 0.1 to 10 µs, the receiver bandwidth may lie between 200 
KHz to over 10 MHz. Bandwidths from 1 to 2 MHz are the most common.  
 
ANTENNAS AND SCANNING 
 
The majority of radar antennas use dipole or horn-fed paraboloid reflectors, or at least 
reflectors of a basically paraboloid shape, such as those shown in diagrams below. In 
each of the cut paraboloid, parabolic cylinder or pillbox reflectors, the beamwidth in the 
vertical direction will be much worse than in the horizontal direction, but this is 
immaterial in ground-to-ground or even air-to-ground radars. It has the advantages of 
allowing a significantly reduced antenna size and weight, reduced wind loading and 
smaller drive motors. 
 



ANTENNA SCANNING 
 
Radar antennas are often made to scan a given area of the surrounding space, but the 
actual scanning pattern depends on the application. In the diagrams below, we show some 
typical scanning patterns. 
 
The first of these is the simplest but has the disadvantage of scanning in the horizontal 
plane only. However, there are many applications of this type of scan in searching the 
horizon, e.g., in ship-to-ship radar. The nodding scan of Fig.b is an extension of this; the 
antenna is now rocked rapidly in elevation while it rotates more slowly in azimuth, and 
scanning in both planes is obtained. The system can be used to scan a limited sector or 
else it can be extended to cover the complete hemisphere. Another system capable of 
search over the complete hemisphere is the helical scanning system of Fig.c, in which the 
elevation of the antenna is raised slowly while it rotates more rapidly in azimuth. The 
antenna is returned to its starting point at the completion of the scanning cycle and typical 
speeds are a rotation of 6 rpm accompanied by a rise rate of 200/minute. Finally, if a 
limited area of more or less circular shape is to be covered, spiral scan may be used as 
shown in Fig.d. 
 
AUTOMATIC DETECTION 
 
An operator viewing a PPI display or an A-scope “integrates” in his/her eye-brain 
combination the echo pulses available from the target. Although an operator in many 
cases can be as effective as an automatic integrator, performance is limited by operator 
fatigue, boredom overload and the integrating characteristics of the phosphor of the CRT 
display. With automatic detection by electronic means, the operator is not depended on to 
make the detection decision. Automatic detection is the name applied to the part of the 
radar that performs the operations required for the detection decision without operator 
intervention. The detection decision made by an automatic detector might be presented to 
an operator for action or to a computer for further processing.  
 
In many aspects, automatic detection requires much better receiver design than when an 
operator makes the detection decision. Operators can recognize and ignore clutter echoes 
and interference that would limit the recognition abilities of some automatic devices. An 
operator might have better discrimination capabilities than automatic methods for sorting 
clutter and interference; but the automatic, computer-based decision devices can operate 
with far greater number of targets than an operator can handle.  
 
Automatic detection of radar signals involves the following: 
 

 Quantization of the radar coverage into range, and maybe angle, resolution cells. 
 Sampling of the output of the range-resolution cells with at least one sample per 

cell, more than one sample when practical 
 Analog-to-digital conversion of the analog signals 
 Signal processing in the receiver to remove as much noise, clutter echoes, and 

interference as practicable before the detection decision is attempted. 



 Integration of the available samples at each resolution cell. 
 Constant-false-alarm rate (CFAR) circuitry to maintain the false-alarm rate when 

the receiver cannot remove all the clutter and interference 
 Clutter map to provide the location of clutter so as to ignore known clutter echoes 
 Threshold detection to select target echoes for further processing by an automatic 

tracker or other data processor 
 Measurement of range and angle after the detection decision is made 
 
Track While Scan (Limited Sector Scan)  This is the name given to the tracking 
performed by a rotating-antenna air-surveillance radar which obtains target location 
updates each time the antenna beam rotates past the target, which might be from 
about 1 to 12 seconds. The name track while scan for this type of a radar is now 
seldom used since almost all modern air-surveillance radars provide the equivalent 
with what is called automatic detection and track (ADT). This type of antenna is used 
to scan a relatively narrow angular sector, usually in both azimuth and elevation. It 
combines the search function and the track function. Scanning may be performed 
with a single narrow-beamwidth pencil beam that might cover a rectangular sector in 
a raster fashion. Scanning can also be performed with two orthogonal fan beams, one 
hat scans in the azimuth and the other in elevation. TWS radars have been used in 
airport landing radars, airborne interceptors; and air-defense systems. 
 
A difference between a continuous tracker and the TWS radar is that the angle-error 
signal in a continuous tracker is used in a closed-loop servo system to control the 
pointing of the antenna beam. In the TWS radar, however, there is no closed-loop 
positioning of the antenna. Its angle output is sent directly to a data processor. 
Another significant difference is that the TWS radar can provide simultaneous tracks 
on a number of targets within the sector of coverage, while the continuous tracker 
observes only a single target, which is why it is sometimes called a single-target 
tracker. With comparable transmitters and antennas, the energy available to perform 
tracking is less in a TWS radar than a STT since the TWS shares its radiated energy 
over an angular sector rather than concentrate it in the direction of a single target. In 
airborne-interceptor applications, the TWS radar might be preferred when multiple 
targets have to be maintained in track and the tracking accuracy only has to be good 
enough to launch missiles which contain their own guidance systems to home on the 
target. On the other hand, if highly accurate tracking is needed, a single-target tracker 
might be preferred. 
 
Limited sector-scan TWS radars have been used in Precision Approach radars (PAR) 
or Ground-Controlled Approach (GCA) systems that guide aircraft to a landing. 
These radars allow aground controller to direct an aircraft to a safe landing in bad 
whether by tracking it as it lands. The ground controller communicates to the pilot 
directions to change his or her heading up,down,right, or left. In the control of aircraft 
landing, fan beams have been used which are electromechanically scanned over a 
narrow sector at a rate of twice per second. The azimuth sector that is scanned might 
be 200 and the elevation sector 6 or 70. Landing radars using limited-scan phased 
array antennas, such as the AN/TPS-19, operate differently than scanning fan beams 



since they electronically scan a pencil beam over a region of 200 in azimuth and 150 
in elevation at a rate of twice per second. The AN/TPN-19 used multiple beams to 
obtain a monopulse angle measurement. Being a phased array, the AN/TPN-19 could 
simultaneously track up to six aircraft at a 20-Hz data rate. In the past, radars for the 
control of landing aircraft have been mainly used by the military. Civilian pilots 
prefer to use landing systems in which control of landing is in the aircraft’s cockpit 
rather from a voice originating from the ground. 
 
TWS radars have also been used successfully for the control of weapons in surface-
to-air missile systems for both land and ship-based air defense, especially by the 
former Soviet Union. 
 
Generally TWS systems using fan beams have some limitations compared to systems 
that operate with one or more pencil beams. The fan-beam system can see more rain 
and surface clutter, it is more vulnerable to electronic countermeasures, and there 
might be problems with associating multiple targets that appear in the two beams. 
 
The advantage of TWS compared to a continuous tracker is that multiple targets can 
be tracked. Because it shares its energy over a region of space, the TWS radar needs 
to have a larger transmitter to obtain the same detection and tracking capabilities of a 
STT that dwells continuously on a single target. If the target’s angle is found from the 
centroid of the angle measurements obtained as the TWS antenna beam scans past the 
target, inaccuracies can occur if the target signal fluctuates in amplitude. TWS radars 
are also more vulnerable to angle jamming than are continuous trackers. TWS radars 
can use monopulse angle measurements in an open-loop manner, similar to a phased-
array. Since the monopulse measurement is not made with closed-loop tracking, a 
TWS radar should not experience the wild fluctuations in angle caused by glint when 
there multiple scatterers within the resolution cell or when there is multipath at low 
elevation angles. 
 
MONOPULSE TRACKING 
 
A monopulse tracker is defined as one in which information concerning the angular 
location of a target is obtained by comparison of signals received in two or more 
simultaneous beams. A measurement of angle may be made on the basis of a single 
pulse; hence the name monopulse. In practice, however, multiple pulses usually 
employed to increase the probability of detection, improve the accuracy of the angle 
estimate, and provide resolution in Doppler when necessary. By making an angle 
measurement based on the signals that appear simultaneously in more than one 
antenna beam, the accuracy is improved compared to time-shared single-beam 
tracking systems (such as conical scan or sequential lobing) which suffer degradation 
when the echo signal amplitude changes with time. Thus the accuracy of monopulse 
is not affected by amplitude fluctuations of the target echo. It is the preferred tracking 
technique when accurate angle measurements are required. 
 



The monopulse angle method may be used in a tracking radar to develop an angle 
error signal in two orthogonal angle coordinates that mechanically drive the boresight 
of the tracking antenna using a closed-loop servo system to keep the boresight 
positioned in the direction of the moving target. In radars such as the phased-array, 
angle measurements can be obtained in an open-loop fashion by calibrating the error-
signal voltage in terms of angle. 
 
There are several methods by which a monopulse angle measurement can be made. 
The most popular by far has been the amplitude-comparison monopulse which 
compares the amplitudes of the signals simultaneously received in multiple squinted 
beams to determine the angle. When the term monopulse is used by itself with no 
other description, it generally refers to the amplitude-comparison version. 
 
 
  
 

 
 
 
 
 
 
 
 


